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FOREWORD

This book discusses a fairly wide range of problems in mechanics con-
nected with the practical application of gyroscopes.

The classical studies of A.N. Krylov and B. V. Bulgakov on the theory
of gyroscopes are insufficient for solving the problems encountered in the
development of new gyroscopic systems. Stricter standards of accuracy
have made it necessary to take into account factors formerly neglected and
to explain previously undetected experimental facts. New problems in kine-
matics, the applied theory of elasticity, the theory of oscillations and sta-
bility, and the theory of gyroscopes proper have thus arisen.

The material of this book is naturally diverse,

The first chapter deals with the solution of the geometric problems of
the kinematics of gimbal systemvs;‘ Important, practical problems are dis-
cussed such as the errors caused by the application of simplified schemes
or by the imperfect coordination of gimbal systems operating together, and
the stabilization errors caused by inaccurate mounting of the instruments.
Definitions are given of the pitch and roll angles of the ship and of its course
as functions of the angles recorded by the gyroscopic instruments. The the-
ory of small rotations of a rigid body is applied to the determination of the
stabilization errors. A particular problem in the theory of finite rotations
is treated in a simplified manner. The treatment given differs from that of
A.N. Krylov, B.I. Kudrevich, and G. V. Chekhovich in that spherical tri-
gonometry is not used. The problem of the so-called gimbal error is solved
purely analytically. )

The second chapter deals, likewise analytically, with?ihe geometric prob-
lems connected with the accuracy of the orientation of objects having heel
and trim, solves the problem of the orientation of the German V-2 missile
in the case of alignment errors, makes general remarks on the methods of
solving problems on finite rotations of rigid bodies, and ends by consider-
ing the motion of gyroscopic devices from the point of view of the mechanics
of systems with nonholonomic constraints. This last leads to some interest-
ing practical conclusions.

The third chapter illustrates the importance of making the components of
gyroscopic systems and gimbals sufficiently rigid. Components which
superficially seem extremely rigid suffer frequently excessive deformations
when the tolerances in the manufacture of assemblies for high-accuracy
gyroscopic systems are taken into account. The problems discussed are the
displacement of the gyros' center of gravity due to rotor deformation by cen-
trifugal forces, the deformation of gimbal rings and bows, the misalignment
of housings during mounting, and the influence of the rigidity of the gimbals
on the frequency of nutations. The theory of the discontinuous motion of
kinematic transmissions caused by insufficient rigidity is developed. The
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chapter ends with general considerations on the rigidity of shock absorbers
(dampers) of gyroscopic and other instruments installed on moving objects,
and on the advisability of damping in general.

The fourth chapter begins with an exposition of the methods for establish-
ing the equations of gyroscopic systems. The method proposed here for de-
riving the equations of motion of the gyro from Euler's dynamic equations
seems to be the simplest and most obvious method. Its simplicity is ob-
tained by renouncing the use of Euler angles and his kinematic equations
as unsuited for the theory of gyroscopes, and by adopting Krylov's angles.

This chapter deals mainly with the theory of certain characteristic gyro-
scopic devices whose behavior can be described by means of linear differ-
ential equations. A new theory is given of the gyrovertical with air suspen-
sion. Means for reducing the error of the instrument during rolling, and
methods for compensating the influence of maneuvers and drift on the
instrument are given,

A theory, similar in many respects to the preceding, is developed for
gyroscopic systems consisting of two gyros: one with a vertical axis and
constant speed of rotation, the second with a horizontal axis and a speed of
rotation varying in proportion to the ship's linear speed. The theory of this
last device takes into account Coulomb friction and the operation of the fol-
low -up system.

The 1dea of separating the system of differential equations into two quasi-
independent subsystems is carried out for a relatively simple gyroscopic
device used for equalizing the heel of moving objects. Deriving the equa-
tions of motion of this device by the Lagrange method is too tedious. The
application of the angular momentum theorem necessitates fairly precise
calculations of the interplay of forces in the gyro gimbals. This method
for the derivation of the equations is given in the text.

The chapter ends by giving the general theory of the double-gyro frame,
which is the principal element of many gyroscopic devices.

The fifth chapter treats more thoroughly a number of problems men-
tioned in the preceding chapter, taking into account the nonlinear character
of the forces acting on gyroscopic systems. As a result, new facts are ex-
posed, both in the behavior of gyroscopic systems and in the assessment of
the influence of many parameters on the accuracy and stability.

The development of the theory of heel equalizers leads to the study of a
new kind of motion in the phase plane, the so-called sliding motion.

Two approximative methods of solution are given in this chapter: the
energy method and the method of successive approximations.

The first method is applied to the study of the gyro frame stability, and
also, in the course of its development, to the solution of many other prob-
lems of the oscillations of electromechanical systems. In particular the
influence of certain parameters, not appearing explicitly in the stability
condition derived in the preceding chapter (which was based on the linear
theory), on the damping of the gyro frame oscillations is made clear.

The second method is applied to the study of forced oscillations of the
gyro frame and to the calculation of the errors of a directional-gyro
scheme,

The sixth and last chapter of the book deals with a number of separate
problems arising during the study of the behavior of gyroscopic devices
under laboratory conditions.
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+ One of these is the problem of the wander of the gyrohorizon during
rolling when the method of contact control by the corrective pendulum is
applied. It is solved with the help of probability considerations.

The problem of the influence of yaw on gyrohorizon accuracy was solved
in collaboration with V. I. Kuznetsov. Lack of knowledge of its solution has
frequently led to erroneous conclusions, in spite of its simplicity and obvi-
ousness.

The problem of the top bow represents an interesting example of apply-
ing the general theorems of mechanics to explaining a phenomenon not easily
understood.

In addition this chapter discusses several small problems whose solu-
tions necessitate taking into account seemingly secondary facts, such as
the vibrational rigidity of the gyro suspension and the accuracy of mounting
the contact instruments.

The chapter ends with the study of a follow -up system having a relatively
large amplifier time-constant. An approximative treatment of the problems
along the lines of Chapter V shows clearly the change in the conditions of
free-oscillations and leads to the establishment of simple stability conditions.

It should be added in conclusion that the formulation of most of the prob-
lems treated in the book is the result of the author's contact with the late
outstanding Soviet engineer N.N. Ostryakov (1904 —1946) and with his gifted
pupils and collaborators.

Several new papers on the theory of gyroscopic systems have been pub-
lished by the author since this book was written (the present monograph
is a second slightly revised edition of the book which was first printed in
1952 in a limited issue), Three of them are given here as appendixes.

The first appendix develops methods for writing the equations of motion
of complex gyroscopic systems by applying the angular momentum theorem
to the gyroscopic system as a whole and to its components. This makes it
possible to obtain these equations in the simplest manner, The usual method
of obtaining these equations by applying the Euler-Lagrange method involves
laborious calculations.

An essential feature of the method given is the introduction of the so-
called basic reference frame (which has a translational motion) and the
auxiliary reference frame. The first is used for calculating the inertia
forces and the angular velocities, while the second serves for writing the
equations themselves in the most convenient form,

The second appendix contains the exact theory of the spatial gyrocom-
pass, proposed by Geckeler. The equations of motion of this instrument
are considerably simplified by introducing as initial system of coordinates
a moving Darboux trihedron on a stationary sphere enclosing the Earth.
The accuracy of the results of the theory of the spatial gyrocompass is im-
proved, and the differential equations of small oscillations of the sensitive
elements are solved for an arbitrary motion of the compass on the Earth.
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The author uses the method of introducing a moving trihedron and a non-
revolving sphere in many papers, in particular in establishing the mathe-
matical bases to the theory of inertial navigation. The third appendix deals
with this case.

This appendix gives, apparently for the first time, the equations determin-
ing the position of an object moving arbitrarily on the Earth. Small oscilla-
tions of the stabilized platform of the device are investigated. Inertial navi-
gation during the object's motion at varying altitudes above the Earth's sur-
face is also studied.



Chapter 1

GEOMETRY AND KINEMATICS OF
GYROSCOPIC SYSTEMS

§ 1. Geometry of gimbal suspension systems.
Determination of a ship's pitch and roll angles and its course.
Gimbal error. Bicardan suspensions

Gimbal systems (Cardan suspensions) (Figure 1) are an integral part
of gyro assemblies and of many other instruments. They are used in par-
ticular to create an artificial horizontal platform on a rolling ship. To
that end, the inner gimbal ring is confined to the horizontal plane, either
directly by means of gyroscopes, or by using a forced tilting of the outer
gimbal ring relative to the ship's body and of the inner ring relative to the
outer one through angles specified by special gyroscopic devices.

Consider simultaneously two gimbal systems whose inner rings are
stabilized in the horizontal plane. Let the axis of the outer gimbal ring of
the first system be parallel to the ship's longitudinal axis (Figure 1), and
the axis of the outer gimbal ring of the second system be parallel to the
ship's transversal axis (Figure 2) or, which is the same, perpendicular to
its plane of symmetry,

vy

e

i,
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FIGURE 1 FIGURE 2

The planes of the outer gimbal rings of the two systems usually form
some angle with the deck of the rolling ship. The angle of tilting of the outer
gimbal ring of the first system relative to the deck is called the ship's
angle of roll and is denoted by B. It is considered as positive when it
corresponds to a counterclockwise tilting of the gimbal ring relative to the
deck, as observed from the ship's bow (as is easily seen, this corresponds
to heel to port)=*,

* In nautical language, the heel of the ship to starboard is called positive heel, and is frequently denoted
by 8. The angles 8 and B are obviously connected by the relationship § == — B,

The heel is sometimes understood to mean not the angles of tilting of the outer gimbal ring relative
to the deck, but the angle ¢ which the ship's transversal axis forms with the horizontal plane. In this
case tg 0’ = —tg B cos a,where a = the angle of pitch (cf. below). Neglecting the sign, the heel is then
identical with the tilting angle " of the inner gimbal ring, relative to the outer one of the second system.
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The angle of tilting of the outer gimbal ring of the second system re-
lative to the deck is called the ship's angle of pitch and is denoted
by a«. It is considered as positive when it corresponds to a counterclock-
wise tilting of the gimbal ring relative to the deck, as observed from star-
board (this corresponds to trim by the bow, or positive trim, in which case
the stern is raised relative to the bow)*.

The ship's course will be defined later.

Five reference frames will be used: the zyz system fixed to the ship
(the z-axis is directed to starboard parallel to the ship's transversal axis,
the y-axis is directed to the bow parallel to the ship's longitudinal axis,
and the z-axis is directed upward perpendicular to the deck); two systems
2Zy'7 and £y's" fixed to the outer gimbal rings of the first and second sys-
tems respectively; and two systems §m, and §ng, fixed to the inner gim-
bal rings of the two systems. The axes of the last four systems are so
oriented that all coincide fora=B=0(i.e., when the deck plane zy is hori-
zontal), except in the location of the origin of the zys system.

The y-axis of the Z'y’Z coordinate system fixed to the outer ring of the
first gimbal system is parallel to the ship's longitudinal axis y(Figures 1
and 3). The ring itself is tilted through an angle B (roll angle) about the
ytaxis.

The direction cosines of the Z'y'Z system relative to the zyz system are:

z y 3
Z  cosP 0 —sinf (1)
v 0 1 0

7 sin 0 cosp

The 2’-axis is simultaneously the §-axis of the §y,(, coordinate system
fixed to the inner ring of the same gimbal system. The &"-axis (or, which
is the same, the §;-axis) is horizontal, since the inner gimbal ring is stabi-
lized in the horizontal plane, and the §y,; plane is therefore horizontal.

We denote by & the tilting angle of the inner gimbal ring of the first system
in relation to the outer ring (Figure 3). The tilting takes place about the
sl-axis (or, which is the same, about the z'-axis). It will be considered as
positive (a' > 0) if the tilting is counterclockwise when observed from the
positive direction of the axis § (), that is from starboard. The directipn
cosines of the g, system relative to the Z'y'’z system are:

’ ’ '

z v z

E 1 0 0

wn 0 cosa’  sind (2)
G 0 —sind cosa

The direction cosines of the §7, system relative to the zyz system can
now be found. The following formula is obtained by using the well-known
theorem of analytical geometry on the cosine of the angle between two
straight lines in space:

cos b,y = cos £,2’ cos yz’ }- cos &,y cos yy’ - cos ;2 cos yz'

* The term “trim” is sometimes also applied to the angle § which the ship's longitudinal axis makes with
the horizontal plane, This angle coincides with the angle of tilting @' of the inner gimbal ring of the first
system relative to the outer ring (Figure 1) and

tg¢=tgacosp.



.Analogous formulas are valid for the other angles. We finally obtain:

z ] z
& cos B 0 —sin P
Y sin &’ sin B cosa sin a’ cos B 3)
{  cosa’'sinp —sina cos a’ cos B

After a certain amount of practice, it is obviously easy to derive directly,
by projecting on the axes z, y, and z unit lengths lying onthe axes §;, 7;, and {;
(Figure 3).

&

FIGURE 3 FIGURE 4

Consider now the second gimbal system. The z"axis of the outer gimbal
ring (Figures 2 and 4) is parallel to the ship's transversal axis, i.e., perpen-
dicular to the ship's plane of symmetry. The ring itself is tilted through an
angle a (pitch angle) about the zv-axis, the tilting being counterclockwise for
a>0[viewed from starboard].

The direction cosines of the z"y*z" system relative to the zyz system are:

z v )
z 1 0 0
g 0 cosa sina (4)
7 0 —sina cosa

The inner gimbal ring is tilted relative to the outer ring about the 7,-
axis or, which is the same, about the y"-axis (which coincides with the
M,-axis). We denote by B“the tilting angle of the inner ring relative to the
outer ring (Figure 4); this angle will be considered as positive when the
inner ring is tilted counterclockwise when observed from the side of the
positive n,-axis (or, which is the same, of the positive y"-axis), that is,
from the bow.

Since the inner ring is horizontally stabilized according to our assump-
tions, the &g, plane is horizontal, and therefore the y"-axis, which coin-
cides with the mp-axis, is also horizontal.

The direction cosines of the i, system relative to the x'p"#" system

are: z’ V :,/
& cos p* 0 —sin p’
" 0 1 0 )
¢ sin p* 0 cos p¥



The direction cosines of the §mf, system relative to the zyz system can’
be found from (4) and (5):

z y z

&, cosB” sinasinf’* —cosasinp”

Ty 0 cosa sina (6)
U, sinf” —sinacosP’ cos a cos '

The &, and §m, planes are horizontal according to our assumptions, and
the axes (,and (, are therefore vertical. It follows that the axes {, and {,
are parallel, and that their direction cosines relative to thez yzsystem are
respectively equal. Three equations are therefore obtained from (3} and (6):

cos @ sin p=sin p’,
—sin a’ = —sin a cos B*, (7)
cos o’ cos B == cos a cos f*,
Each of these equalities follows from the other two. The following two
formulas are obtained by dividing both the second and first equations by the third:
tg o' —=tgacosB, (8)
tgB"=tgp cos a. 9)
These formulas are independent; they are important in the calculation and
plotting of the tilting angles of the inner rings of the first and second gim-

bal systems relative to their outer rings.
It follows from these formulas that

1 cosa

sl e,
V14 tg2acostp Vl—sin'asin!p
sina’ = tg a o8 P~ = sinacosp (10)
Vi —sin?asin?p Vi —sintasin? B
and .
cosp':icospl

(11)
sinﬁ"=%cosa sin B,

R=\/1—sin’¢sin'P. (12)

The value of the radical Ris very near to unity for small values of the
angles aand P. If, for instance, a= 7° and B=15°, then

R = y10.122*. 0.259* = 0,99950,

i.e., R differs from unity by only 0.0005.
Using formulas (10), (11), and (12), the trigonometric functions of the
angles @ and B” can be eliminated from (3) and (6), transforming them into:

where

z v z

t; OOSP 0 —sinp

T %sinacospsmp -;Tcosa —;—i-sinacos’P (13)
G %cosasinﬂ -—-;Tsinacosp %cosacos



and

z v g

& -%‘-cosp %oosasinasinp ———}iws’asins

e 0 cosa sina (14)
G —;—icosasinﬂ —-;-‘-sinacosp %cosacosp

Table (13) is most important.

It follows from (3) and (6) (or, which is the same, (13) and (14)) that
when @ and B differ from zero the coordinate systems &G, and Enf, are
differently oriented in relation to the ship, and therefore also in space,
Since the axes § and § of these coordinate systems are parallel, this dif-
ference in the orientation reduces to a relative rotation of the parallel
planes £, and £, in which the inner rings of the two gimbal systems lie,
We denote this rotation by y (Figure 5), and consider it as positive when
the system §l, rotates counterclockwise relative to the system g, when
observed from the positive direction of the C,-axis (or, which is the same,
of the {,-axis), i.e., from above,

e |
T

&

&

FIGURE 5
It is easily seen that

sin y=—cos §;7,.
Also, since
cos &7, == cos £,z cos 1,z -} cos £,y cos Ny - cos §,2 cos 1,3,
it follows from (3) and (6) (or, which is the same, from (13) and (14)) that
the angle yis given by
sin y==sin a sin B. (15)
For small values of @ and B this formula can be replaced by the approxima-
tion
1=ap. (16)
It follows from (15) that

cos1=\/1-sin2asin’B=R. (17)

It is thus seen that if the two gimbal systems are so mounted that the
pivots of the outer ring of the first system are parallel to the ship's longi-
tudinal axis while the pivots of the outer ring of the second system are per-
pendicular to the ship's plane of symmetry, and if the inner rings are then



stabilized by any method in the horizontal plane, the relative rotation of the-
inner rings during the ship's rolling will be determined by (15).
For a pitch angle a=7° and a roll angle B=15° this formula yields:

sin 1=0.122.0.259=0.0316, 1= 1048,
while the approximate formula (16) gives

=0.122 - 0.262=0.0320, (1°50)).

It is seen from this example that the angle ¥ may in many cases be very
large. In order to avoid errors this fact should be taken into account when
any azimuth direction is fixed relative to the inner gimbal rings.

Mount, for instance, on the stabilized inner ring of the first gimbal sys-
tem a directional gyro oriented along the north-south line, and let the 7,-
axis (the course line) form a certain angle x with the directional gyro axle
(the ship's course). Reproduce, by means of follow-up systems (servo-
mechanisms), this angle in the second gimbal system as the angle between
the 7me-axis and the horizontal optical axis of the sight mounted on this ring.
The ship rolling will be accompanied by a movement of this optical axis in
the horizontal plane. The axis will make an angle Y with the north-south
line; the value of this angle is given by (15).

The fact that the stabilized rings of differently mounted gimbal systems
rotate relative to each other was detected at the end of the thirties and re-
ceived the name gimbal error (Chekhovich).

The problem of the gimbal error will later be examined more generally
when the pivots of the outer gimbal rings of the two systems are not directed
along the deck axes and form an arbitrary angle.

In order to avoid gimbal errors, the outer gimbal rings of the systems,
which serve to stabilize the inner ring in the horizontal plane, are usually
so disposed that their pivots are parallel to the ship's longitudinal axis (as
was the case with the first of the above-considered two gimbal systems).

The m,-axis, fixed to the inner ring of this gimbal system, is called the
ship's course line. This axis is parallel to the projection of the ship's
longitudinal axis on the horizontal plane; in the case of zero pitch angle a,
it is parallel to the ship's longitudinal axis. The angle between the north
direction and the ship's course line is called the ship's course and
is denoted by x (Figure 6). An increase of the angle x corresponds to a
veering of the ship to starboard (a clockwise rotation when observed from
above)*, The angle x is measured and indicated on the repeaters of the
ship's gyrocompasses.

The system of angles g, B, x defines uniquely, for a given ship location,
the orientation of the ship as a rigid body in its rotational motion relative
to the Earth.

Gyroscopic instruments such as the gyroazimuthhorizon measure and
reproduce by means of follow-up systems (servo loops) all three angles
a, B, x, with the one exception that the angle x» is measured from some

* The ship's course has also been differently defined, e.g., as the angle between the north direction of the
line formed by the intersection of the horizontal plane and the ship's plane of symmetry. It is easily seen
that this last angle coincides with the angle between the north direction and the %g-axis fixed to the inner
ring of the second gimbal system (the pivots of whose outer ring are perpendicular to the ship's plane of
symmetry), and therefore differs from the course definition given in the text by the value of the gimbal
error .

10



gyro-determined direction in the horizontal plane, and not from the north-
south line. Instruments such as the gyrovertical, also used in practice,
only measure and reproduce the angles a and f.

The gimbal assemblies of instruments such as the gyroazimuthhorizon
(without gyroazimuth) and the gyrovertical represent in many cases a com-
bination of two simple gimbal systems: the ordinary gimbal system, with
the outer ring directed, as a rule, parallel to the ship's longitudinal axis,
and a gimbal system of different design (Figure 7), in which a carriage K
slides along a bow B, and rod C, rigidly connected with the inner ring of the
basic gimbal system, is inserted into the bearing P of the carriage. The
bow B, whose pivots are perpendicular to the pivots of the basic gimbal sys-
tem's outer ring, replaces the outer ring of the second gimbal system, while
the carriage K replaces its inner ring. The need for the bearing P thus be-
comes clear, since during the ship's rolling the carriage K and the basic
gimbal system's ring will rotate relative to each other throughanangle equal
to the gimbal error.

FIGURE 6 FIGURE 7

Similar gimbal systems* are met, in various design variants, in most
control instruments (gyroverticals. coordinate transformers, etc.); they
are called bicardan suspensions.

The bow pivot axis (Figure 7) will be denoted by z, and the pivot axis
of the outer gimbal ring of the basic system by y. The coordinate system
zyz is therefore fixed to the instrument housing. The pivot axis of the inner
gimbal ring of the basic system will be denoted by £, and the axis perpen-
dicular to it and lying in the plane of the inner ring by 4. The coordinate
system §q{is thus fixed to the inner gimbal ring of the basic system. The
position of the bow and the outer gimbal ring at which the planes §y and zy
coincide will be called the initial position. The counterclockwise tilting of
the bow (when observed from the positive direction of the z-axis) will be de-
fined as positive and denoted by &. The counterclockwise tilting of the outer
gimbal ring (when observed from the positive direction of the y-axis) will be
defined as positive and denoted by B.

If the bicardan suspension housing is so disposed that the zyplane is par-
allel to the deck plane and the y-axis parallel to the ship's longitudinal axis,
it follows that if the &y plane is stabilized in the horizontal plane the angle a

* Some other types of gimbal systems will be described in § 4 of this chapter,
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represents the ship's pitch angle, and the angle B the ship's roll angle, in
the sense in which these angles were defined above (pp. 5 and 8).

In this case the y-axis represents the ship's course line; the angle x be-
tween the 7-axis and the north-south line is by definition the ship's course
(cf. p.10).

If for a=P=0, the ship's direction points north, then »= 0; if it points
east, then » = 90°,

It follows from the above that the direction cosines of the system g,
fixed to the inner gimbal ring, relative to the system zys fixed to the hous-
ing are given in Table (13), which gives the direction cosines of the system
ek, fixed to the inner gimbal ring relative to the system zyz fixed to the
ship (in that case the y-axis is the pivot axis of the outer gimbal ring —
cf. Figure 1),

Since this table is of great importance for many subsequent studies, it
is repeated here:

z y 7
3 cosP 0 —sin §
7 -}—t-sinccospsinp -%cosa -}Tsinacos’p (18)
4 -%—cosasinﬂ —%sinacoap -;i-cosacosp

Another table which will be helpful later on is

z y z
3 cos B 0 —sinf
1 sina'sinB cos @ sin o’ cos B (19)
{  cosa’sinf —sind cos ' cos P

In this table, which is in fact Table (3), a’denotes the tilting of the inner
gimbal ring of the bicardan suspension relative to the outer ring (Figure 7);
it is considered as positive if the inner ring is tilted counterclockwise when
observed from the positive direction of the §-axis.

Note that the orientation of the outer gimbal-ring pivot axis (whether
parallel to the ship's longitudinal axis or perpendicular to its plane of sym-
metry), is unimportant for a gyrovertical without gyroazimuth. In fact, &
and B, the angles of tilting of the bow and of the outer ring are symmetrical
in the expressions given in Table (18) for the direction cosines of the {-axis
relative to the 2, y, 2 system.

Accordingly, if any instrument is stabilized in the horizontal plane by
means of a synchronous link with a gyrovertical and is suspended in a
bicardan suspension similar to that of the gyrovertical, then the mutual
disposition of the bows of these suspensions, whether parallel or perpen-
dicular to each other, is immaterial.

§ 2. Relative rotation of two stabilized systems
during ship's rolling

It was shown in the preceding section that if two gimbal systems are
mounted on a rolling ship in such a way that the pivots of their outer rings

12
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. are parallel to the deck and perpendicular to each other, while the planes
of the inner rings are stabilized in the horizontal plane, then during the
ship's rolling the inner rings will rotate relative to each other through an
angle determined exactly by (15) and approximately by (16).

This section deals with the more general case when the pivots of the
outer rings form an arbitrary angle ¢; the problem is solved with an accu-
racy sufficient for technical needs.

It will be assumed that two bicardan suspensions of the type shown in
Figure 7 are mounted on the ship. The pivots of their outer gimbal rings
and of the bows are parallel to the deck, their direction in the deck plane
being arbitrary (it is of course also possible to dispose them parallel to
any other plane fixed in the ship, such as the plane of the ship's frames).

We denote (in accordance with Figure 7) by &, ¥, % the axes of the co-
ordinate system fixed to the housing of the first bicardan suspension, by
Zy, Ygs % the axes of the coordinate system fixed to the housing of the second
bicardan suspension (z; y denotes the bow pivotaxis, y,, the outer gimbal-ring
pivot axis), and by &, 7,, {; the axes of the coordinate system fixed to the inner
gimbal ring of the first bicardan suspension; the axes §;, 7,, {; coincide re-
spectively with the axes z;, ¥;, %, when the plane of the inner ring is parallel
to the deck plane (or, which is the same, to the &y, plane).

We denote by a, and B, the angles of tilting of the first bicardan suspen-
sion bow and outer gimbal ring from their mid-positions. The bow plane
passes in its mid-position through the 2z-axis, while the plane of the outer
ring is in its mid-position perpendicular to this axis, i.e., it passes through
the #,-axis. The angle &; will be taken as positive when the bow is tilted
counterclockwise when observed from the positive direction of the Zy-axis;
the angle B, will be taken as positive when the outer ring is tilted counter-
clockwise when observed from the positive direction of the yy-axis.

The direction cosines of the system Ey(, relative to the system zy,3,
can be found from Table (18) by suitably changing the notation:

n h 5
& cos B, 0 —sinf,
1 .
N Tlsinaloosplsinp, T’;oosul -j%-sm a, cos?p, (20)

1 . 1 1
14 -Rroosa,smﬂ, —T‘TSina.,cosPl —Ecoaa,cospl

where R,= VT —sin%q, sin*p;.

An analogous notation will be used for the second bicardan suspension:
ZyYe23, for the coordinate system fixed to its housing, Em,t. for the coordinate
system fixed to its inner gimbal ring, and agand B, for the angles of tilting
of its bow and outer gimbal ring. The following table is then obtained by
analogy with (20) for the direction cosines of the system §mn{; relative to
the system ZyYq2,:

z; Ys 5
& cos B, 0 —sin B,
N -%’- sin a; cos B, sin By —}3— COS &y -I-;Tsin a, cos?B, (21)

1 1 1
[ T’cosa,sinp, —T’-sina,oosﬁ, R—’cosazcosﬁ,
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where R,= T—sin%a, sin’p,.

The =z, and Zy, planes are parallel in accordance with the above, and
the angle between the axes z; and Z; (or, whichis the same, between the axes
1 and y,) is equal to some given value ¢ (Figure 8). The direction cosines
of the system z,% relative to the system )% are therefore:

o1 n L
zy cos sin ¢ 0
y, —sing cos ¢ 0 (22)
2, 0 0 1

According to the conditions of the problem the planes of the inner gimbal
rings of the two suspensions are also parallel. We denote by x the unknown
angle between the axes §, and g, (Figure 3).

Y
] x
2(’
L4 z,

FIGURE 8 FIGURE 9

h

The direction cosines of the system gm0, relative to the system g,
are analogous to those given in (22):

& L G
ts cosy siny 0
m, —siny cosy Y (23)
¢ 0 0 1

Obviously, if ¢y=p,=0, then y=¢ and ¢;=p,=0, since in this case the
coordinate system x5 and g, and also x,0.2, and §m,l,, are respectively
parallel.

If the angles @, and B, are different from zero, the angle y will not be
equal to ¢, and their difference, y=x—¢, will represent the magnitude of
the rotation of the inner gimbal ring of the second suspension relative to
its housing.

An analytical expression has now to be found for y as a function of the
angles a;, B,, ¢. Suchanexpressioncanthenifrequiredbe easily transformed
into a functionof the angles a,, B,, ¢, since the angles a; and P, can be defined as
functions of the variables a,, B,, and ¢.

In order to solve this problem, the direction cosines of the system z,y,3,
relative to the system §m(, will be determined in two different ways, based
respectively on Tables (20) and (22), and (21) and (23).

The first gives

COS Y3y == COS Y32, COS ;%) —+ COS Yolf; €OS MjY; - COS Ya2; COS 3 =

1 . : i
=—g; sin e, cos B, sin B, sincp—}-—l—t—l-cos a, cos 9,
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- the second

€OS Y37y == COS Ysky €08 Mk - €OS Y;My COS W73 - cos yily cos i, =
1
=gy C0s % €08 X.

The required direction cosines are obtained in the following two forms:

& ™ &
L I . 1
zy cosPycose -E;sxna,cosp,smﬂ,cm?+ —ﬁrcou,sin&m,—
i
+%1—cos¢1sin9 —-Elinqeospllin"

1 . 1 .
yy -=cosB;sine —-E—sina,cosﬂlsinp_‘smy-{- —‘ﬁrcosqtin&smy— (24)

1 1
+-l_il—°°"1°°’7 -—-RTshu,cosp,w"
A 2 4
2 —sinf; R, sin a; cos? B, 7, ©0S a; co8 By
and
& o G
zg cosflycosy — cos By siny -+ —I:-‘—eoacgsinﬁg
1 1
> sinagcosBysinfysiny -+ N sinaycosBysinfycosy
1 1 1
v — R, cosaasiny R, cosaacosy  — qr-sinapcosf (25)
23 —sinBycosy — —sinfysiny 4
i 1 {
—-Eclna,cosngsinl +-§-’—sina,cosipgcosx ﬁ-z-cougouﬁ,
where

R,=\T—sin'a;sin’f; and R,=V1—sin'gsin?f,.

The following three equations are obtained by equating the expressions
for the direction cosines of the {,-axis relative to the system &y yy2yin (24)
and (25):

3 cos a, sin B, cos cp—-—i:T sin &, cos B, sin == %; cos a,sin B,

A,
—-3 cos sin B, sin —- sing cos B, cos =—-L sine cosf,;
y Mbade 1 S10 ¢ — ) ) €OS ¢ =— "}~ 2C0S Pz (26)

I:—lcosalcospx= F‘z-cosa,cospz.
Fach of these equalities follows from the other two.

Assume that the angles a, and P, (and therefore also the angles agand By
are first-order infinitesimals, and neglect all terms of higher order than
the second; it then follows that the radicals R, and R, can be replaced by
unity, since they differ from it only by fourth-order infinitesimals.
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The first two equations of (26) can now be replaced by the following ap-
proximate formulas:

By=-—a, sin ¢ 4-B, cos ¢;
ay=a,cos¢-p,sing,

which will be accurate up to and including second-order infinitesimals.
The following equation is obtained by equating the cosines of the angle
between the axes y; and §; in Tables (24) and (25):

27

—cos b, sin 7=—-1:—zcosa,sinx. (28)

The ratio of the cosines in this expression can be expanded in series and
equals, in a second-order approximation.

i
cosBy "Tﬁ

— 1oe 4 1.4
cosay o =1—7f+74
1—74
Using this expression, formula (28) reduces to the approximate equation:
siny=(1— R+ zo)sing. (29)

It is seen from (29) that the angle yx differs from the angle ¢ by second-
order infinitesimals only. Since y=x-—¢9, the following approximate ex-
pression can be written:

sin y = sin (¢} 1)=sin ¢ -}-y cos p. (30

This expression is accurate up to second-order terms ina,, B, @,, and Bs-
The following relationship is obtained by equating (29) and (30):

.,:_
7 cos ?:-—T'Sln Pe
Inserting the second of equations (27) gives, after obvious simplifications.
i
1= (] — B} sin 29 + B, sin’s. 3

This last formula gives the solution to our problem.
For instance, let a;= -7° B,=15°, ¢=45°, Then

1= —(0.2622—0.122%) — 0.262 - 0.122 - - = — 0.0294.

This is a setting of the suspensions which was once popular,
For ¢= %—, i.e., when the axes of the outer gimbal rings of the two
bicardan suspensions form a right angle, (31) reduces to
T=ap

This formula coincides, as was to be expected, with the gimbal-error
formula (186).
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§ 3. Stabilization errors caused by inaccurate
mounting of the gimbal systems
(geometry of two bicardan suspensions)

The combined working of several stabilized devices on the same ship
can be accompanied by errors due to additional rotations of the stabilized
elements. Such rotations are caused by the absence of strict parallelism
between the principal axes of the gimbal systems, by nonidentical kinematics
of the gimbal systems, and by inaccurate stabilizationinthe horizontal plane.

The influence on the combined working of two bicardan suspensions of
nonparallelism between the pivot axes of the outer gimbal rings or of the
bows, will be examined in this section. The influence of the other factors
mentioned above (nonidentical kinematics of the suspensions and inaccurate
stabilization in the horizontal plane) will be treated in §§ 4 and 5 of this
chapter,

Let two bicardan suspensions be mounted on the ship (Figure 7), and
let their inner gimbal rings be accurately stabilized in the horizontal plane.
Due to inaccuracies in the mounting of the suspensions housings, the pivot
axes of their respective outer gimbal rings and bows will form small angles
(since the housing of one suspension is rotated through a small angle in
relation to the housing of the other suspension).

We will use the same notation as in the preceding section. The co-
ordinate systems z,,%; and §n,{; will be considered as fixed to the housing
and to the inner gimbal ring of the first bicardan suspension respectively,
while the systems Zy,%, and Em(, will be fixed to the housing and the inner
gimbal ring of the second suspension respectively. The letters a; and B,
will respectively denote the angles of tilting of the outer gimbal ring and
of the bow of the first suspension, the letters a; and B, the corresponding
angles for the second suspension. The angles a; and &, and likewise the
angles B, and B,, are not equal because of the nonparallelism of the axes
of the coordinate systems z;¥,2, and z49,3, (due to the inaccurate mounting of
the suspensions housings).

L]
\g
N 7
.1} $',.

FIGURE 10

The angles x,and %, formed respectively by the axes m; and 7, with the
north-south line (or with any other fixed direction in the horizontal plane),
are likewise not equal (Figure 10), In particular, the difference

[y — %y, (32)

representing the angle between the axes 7, and 7, (or between the axes §,
and &), is not zero.
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Let a9, B° 1°be the values of the angles a,, By, Y for a;=§,=0 (i.e.,
when the &y, plane coincides with the horizontal plane, or which is the
same, with the §m, and §m, planes). We denote by af, B§, »§ the values ob-
tained by subtracting respectively a, B¢, 7® from «,, pz, .

If @, B,, % denote respectively the pitch angle, the roll angle, and the
ship's course, then a:, ", x: denote the same angles as measured on the
second bicardan suspension after the so-called coordination of the latter's
scales with those of the first suspension.

If the pitch and roll angles, a,and B,, differ from zero, the angles
af, B, x will differ from the angles a, B,, x by the small magnitude Aa, AB,
Ay a,=a3‘+a°=a,+A¢ +¢°.

pz=ﬁ; +Bo=p+48 +p% (33)
n=1f 4 P=2%+81 +1*
The stabilization errors Ae, 48, Ay become zero when a,=B,=0 independ-
ently of the value of a° §° ¥° they also become zero when a®=p0=y"=0
independently of the value of a, and B; (this corresponds to the case when
the axes of the coordinate systems z;,2, and I, fixed to the housings
of the bicardan suspensions are perfectly in parallel).

It follows that the first nonzero terms in the expansions of Aa, AB, At

in series as functions of the variables a,, B,, % B° 1° mustcontainproducts of
the variables g, and B;bya® B° and y®(in
Y other words, the expansions contain no free
’ terms). Ifthe angles «, and B, lie within the
usual limits (much smaller than 90°),
Az, AB, and Ay, can be considered as of
the same order of magnitude as a% §°, 7°
z! Ez or less.
r The squares and products of the angles
7, & a®% B%, 1° and also of Aa, AB, Ay, will ac-
cordingly be neglected in comparison with
FIGURE 11 first-order magnitudes. The expressions
containing the angles-a; and B, will be ex-
panded up to and including second-order terms (squares and products
of @, and B)).

We must now obtain analytical expressions for the errors Aa, AB, Ax as
functions of the pitch and roll angles «;, B;, and the coordination-error
angles a9 B% +° in order to form an idea on the accuracy with which the
housing of one of the instruments must be mounted in relation to the other.

We now introduce a new coordinate system 2°%°2® fixed to the second bi-
cardan-suspension housing and directed so that its axes coincide respec-
tively with those of the coordinate system §gmf,, fixed to the inner gimbal
ring, if the outer gimbal ringistilted throughan angle p® and the hoop through
an angle &° from their mid-positions.

When a; = 8, = 0 (Figure 11), the axes of the coordinate system Ey(, co-
incide with those of the coordinate system #¥,2,, and the axes of the co-
ordinate system §m,{, coincide with those of the coordinate system z%°%° (in
accordance with the definition of the latter). The §m; and §;m, planes are
both horizontal and thus parallel; it follows that the z;y, and 2% planes are
also parallel. The angle between the ;- and §,-axes is equal to * for a;==
=p;,=0; it follows that the angle between the 2,- and 2?-axes is likewise

o, 7
ot =f =0
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equal to P (Figure 11). The direction cosines of the system Z°%°2° relative
to the system zy,2; are therefore:

I, h 5
2° cos siny® 0

y» —siny® cosy 0 (34)
2 0 0 1

In view of the smallness of the angle 1% (34) can also be written in the

form: z, % 3
z° 1 ' 0

U 1 0 (35)
2 0 0 1

in which terms of higher order than the first have been neglected in the
expansions of cos 7° and sin 7%,

The direction cosines of the system §mk; relative to the system zy3,
are identical with those in Table (20) of the preceding section:

5 h L
& cos By 0 —sin B,
0 T:T sina, cos B, sin B, -I:—‘cosal -T:Tsinc‘coa’&
1 . i i
G -i;-cosa,smﬂ, —-E-sinalcosﬁ, -‘T‘-cosc,cosp.

where
R,=\1—sin7a, sin?p,.

The direction cosines of the system z%9%" relative to the system §mG,
are obtained from (20) and (35):

& n G
® cosB, Ti,' sin a, cos B, sin B, 'I:T cos a, sin p, —
Fogoms o sneoh
y° —°cosp; —1° %x- sina, cosB, sinB; 4 -—1°%1- cosa, sinB, — (36)
.i_.%l.ggosa1 ———‘;—l-sina,cosﬂ,
2* —sinB, '1:_1 sin a, cos*B, 7;? cos &, cos B,

We find now the direction cosines of the system z%?°° relative to the
system z,yz. From Table(21) of the preceding section:

3 Y2 Z
£ cos B, 0 —sin By
1 . . i 1 .
T gy sineycos Bysin B, Ty 08 % T Sin cos®p,
$; -‘—;; cos &, sin B, —_ 7:—; sin ay cos B, 'j:‘,‘ cos a, cos P,
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where

Ry=\1 —sin’a, sin?f,.

Since the coordinate systems z%%" and g, coincide when ay,=a® and 8,=§°,
the direction cosines of the system z%°%° relative to the system Z,y,2;, are
obtained from Table (21) by replacing a; and B, by a®and B° respectively:

z ¥ X
z° cos B° 0 —sin B°
y° % sin a®cosB®sinp® 7;‘0‘ cosa’ %6- sina?® cos®f® (37)
2° 4 cosa®sinB? — A sina®cosp? 1 cosa’cos
Ro RO Ro

where
R®=\/1 —sin%a’sin?f".
The angles «® and P° are assumed to be small, and their squares and

products are therefore negligible compared to unity. Table (37) can there-
fore be written as:

s Ys %
2 1 0 —p
v o 1 a® (38)

PP a1

The direction cosines of the system z%°%® relative to the system §,m,ly
are obtained from (21) and (38):

) s G
20 cos B, + POsinf, %’sinazcosﬁ,sinp,— -;—tcosa,sinp,—
—P-}%-ainu,cos’p, —p"l’i—’cou,coap,
. { B 1
¥ —alginf, —i’-cosag-lraoiz—sm-,cos'p, -—ﬁsina,cosﬂg+
1
+a0-zcosa,cospg (39)

20 BOcosfBy — sin By ﬁO%’—sinn,cosﬂ,sin&— B"-‘:Tcosqainﬁg-{-

—ao%’cosug-i- +¢°1+’sinqcoaﬁ,+
+%cos’ﬂ,linc, +7‘3-;cos¢¢cospg

Tables (36) and (39) are important for the subsequent calculations.

Since the axes €, and {, are parallel, their direction cosines relative
to the system 2z%%° must be equal. The following three equalities are
therefore obtained from Tables (36) and (39):

1 . 1 .
Ry 008 % sin B— f—lﬂ-sma,cosp, =

b3 . 1
=y 005 % sin B, — [ 7 coseycosBy (40)
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1 1
—fﬁcosa,sinﬂ, —Tlsinc,eoepl=

1 1
=—R_,'in ay co8 pz+¢°n—acoa¢,cosﬂz.

1 1 (40)
208 9, cos B, =P* 5= cos oy sin B,

+a'7:;sln¢,cosp, + -i:-z—cosngeosﬂ,
Each of these equations follows from the other two with an accuracy up to
first-order terms in a¥ B*, and 7°.

Using (40), the angles a; and B, can be found if a,, B,, a% B and ¥* are
given. This solves the problem of determining the errors in the stabiliza-
tion of the inner gimbal ring of the second bicardan suspension in the hori-
zontal plane, since Aa and ABcan be obtained from (33) for known a,and B,.

In order to obtain formulas for the direct determination of Aa and AB, we
expand the trigonometric functions of «® and p® in series. Using (33), the
following expressions are obtained as a first-order approximation:

c08 ay== co8 &, — (a*-}- Aa) sin a,,
sin ay = sin a, - («° -}- Ax) cos &,,
cos By == cos B, — (B*-}- AB) sin B,,
sin B, =sin B, 4 (B* - AP) cos js,

(41)

and

1 1 _ 1 +
Ry~ VT —sintogsin®f;  Vi—sinle; sindp,

+ @+ 80) g G +
+ 0+ 00 3 = e

or
1 1 ©os a; 8in a, sin2 B,
7, = T @149 ] +
+ (B°+4B) sin a; 00s B, sin B . (43)
B
The substitution of (41) and (43) into the first two equations of (40)
yields
| S i
&’ 8% sin p,—7°a—‘sm¢,cos p,=7-l-cos¢,sinp,+

+ (a%+4 Aa)cos a, sina, sintB, - (B?4- AB)sin a, cos B, sin B,

cosa, sin B, —
— i (- 80) sin &, sin B, + (B + 4B) — oos o, cos By —

_r-:i;'malmplv (44)
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1 1 1 .
—T'i;w'“x sin Bl—'n_f sin a, cos B'=__ﬁx— sin a,cos §; —

__ (e948e) cos ey sinay sin? fy+-(B+4B) sint ey conBysinfy o o0p
p

— (a4 8a) 008 3, c08 By -+ (*+48) - sin &y sin fy+

+¢'%“ o8 a, cos B,.

These equations are of the same order of accuracy as (41) and (43).
They can be simplified to

—1°sin a, cos B, =

__ (a®+ Aa) cos a; sin B, - (B0 + AB) sina, cos B,
= {—sinta, sind Py

— («® 4 Aa) sin a, sin B, 4 AB cos a, cos B,,

—1°cos a, sin B, =
—_ (a® 4 Aa) cos a; sin B; 4- (B° + AB) sin a; cos B; sin*a, cos B, sin B, —

1 — sinta; sind fy
— Aa cos a, cos B, -+ (B* + AB) sin a, sin B,.

We now expand the trigonometric functions of a; and B, appearing in (45)
into power series and neglect all terms of higher order than the second.
Equations (45) then become

cos a, sin a, sin®, —

(45)

— 0, = — (& Ba) o, +8B(1 — y oI — 7 BY).

(46)
1 1
—h=—0a(1— g} —zB)+ "+ 2p) o,
These can be simplified still further by taking into account the fact already
mentioned (cf. p.18) that the expansions of Aa and ABin power series of a,
and B, contain no free terms, and by neglecting the products of Aa and AP as
second-order terms in @, and B;. The following final formulas result:

4p=—1°a, +-a’a,B,,
ba= 1P, +B'%by

Formulas (47) give the value of the errors in the stabilization of the inner
gimbal ring of the second suspension in the horizontal plane during the
ship's rolling. It is seen that these errors depend mainly on 7, i.e., the
rotation about the g-axis during mounting of the second bicardan suspen-
sion relative to the first,

Assume for instance

(47)

a®— o= °—0.008 (= 0.5%; a,=0.122(7°); B,=0.262(15°).
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" Then:
Ae= B, Pup= 00021400003 (741,
= —1%, -+ a8, = — 0.0010 4 0.0003 (—% + 1)

The value of Ay, giving the azimuth error in the stabilization of the inner
gimbal ring of the second suspension, willnow be calculated. It is seen from
Figure 10 that

cos §ymy == sin (*-}- A7) < 1*}-Ar. (48)

On the other hand it follows from (36) and (39) (which give the direction
cosines of the system 2%°%2® relative to the systems gy, and &m,{, respec-
tively) that:

cos £y, = cos £,2% cos 1,2° - cos £gy° cos 1,y° - cos £,z cos s =
= (5 #n @, cos B, sin B, + 17 - cos a,) (cos B+ sin ) -+
+ (—1°; #in o cos b sin B, - - cos &) (—a® sin py) +-

+ i 910 o cos® By (° oos B, — sin By). (49)

Expanding the right-hand side of (49) in power series, neglecting all
terms of higher order than the first in % B% and {°, and equating it to the
right-hand side of (48), we obtain

T‘+AT=-;-;sin a, cos B, sin B, cos ps+T°—;-;cos¢,cosP,+
+p.%l'sin G;COSF, sin pl Si.llp,-—l’ -}‘l—oos a, sinﬂ’_*_

+p'-i:—l-sina,cos’ﬂ,cosﬁ,—%sina,cos’ﬁ,slnﬂr (50)

Inserting (41), and neglecting all terms of higher order than the first
in e®and P*, yields

1 +A~(=7"T[sin a, cos?B, sin B, — (B° -+ AB) sin a, cos P, sin?B, 4
+ 1° cosa, cos B, - B° sin a, cos B, sin?B, — a® cos a, sin B, -
-+ P* sin @, cos® B, — sin a, cos?B, sin B, —
— (B°+ 4p) sin o, cos®B;], (51)

which can be simplified to
1
AT==—T°+—RT[T°°°3¢1°°3pl—ApSiD“lmpl—
—a%cos a, sin B, ). (52)

Formula (52), whichdetermines Ay, can be considerably simplified by
neglecting all terms of higher order than the second in a, and B,

3
A1=—1°'—‘;i'-=-_a°p, — ABa,. (53)
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Inserting the expression for AB from (47), and neglecting terms of higher -

order, lead to the following final formula:
-8

This formula gives the azimuth error in the stabilization of the inner
gimbal ring of the second suspension during the ship's rolling. It is seen
that this error depends mainly ona® i.e., on the inclination of the housing
of the second suspension (i.e., of the z-axis) referred to the plane z;%,.

Assume as above a®=p®=1°=0.008 (=2 0.5°), a,=0.122(79), B,=0.262(15°),
then .
1

Ay=—a%, 15 B o _0.0021 —0.0002 (—7 — 1.

The stabilization errors of the roll and pitch angles and of the course
mounting of the [second] bicardan suspension housing are therefore, ac-
cording to (47) and (54),

Ba= B, Pafy

0p = —rey + o (55)
& —

WPV el §

It is seen from this that the influence on the stabilization accuracy of

the inclination of the second suspension housing (i.e., of the z,-axis), re-
ferred to the ship's plane of symmetry (the angle B% is negligible.

§ 4. Horizontal stabilization errors of combinations
of different types of gimbal systems

1f two kinematically different gimbal systems are mounted on the ship
and their inner rings are stabilized in the horizontal plane, the values of
the roll and pitch angles indicated on the scales of the two gimbal systems
can differ, due to the difference in the geometric determination of these
angles.

In a bicardan suspension, for instance (Figure 7), the tilting angle a of
the bow is taken as the pitch angle, and the tilting angle B of the outer gim-
bal ring as the roll angle.

In the initial position, the plane of the outer gimbal ring is parallel to
the zy plane, while the bow plane is perpendicular to it (z=bow pivot axis,
y = outer gimbal-ring pivot axis; the zy plane is parallel to the deck plane,
the y-axis being parallel to the ship's longitudinal axis).

In the simplest gimbal system on the other hand (Figure 1), the tilting
angle a of the inner ring relative to the outer ring is taken as the pitch
angle, and the tilting angle B of the outer ring relative to the deck plane is
taken as the roll angle (the outer ring pivot axis y is parallel to the ship's
longitudinal axis).

It is therefore seen that, while the roll angle is identically defined in the
two cases, different definitions are used for the pitch angle. In the first
case, the pitch angle a is the bihedral angle between the bow plane z{ (the
vertical plane containing the z-axis)and the plane zz perpendicular to the
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» ship's longitudinal axis (the z-axis is parallel to the ship's mast; the zz
plane is parallel to the transversal plane or plane of the ship's frames).
In the second case, the pitch angle o is the bihedral angle between the ver-
tical plane passing through the inner gimbal-ring pivot axis §, and the same
zz plane perpendicular to the ship's longitudinal axis (this plane contains
also the §-axis).

The angles a and a’ are equal only for roll angle p=0, i.e., when the inner
ring pivot axis §, of the simplest gimbal system is parallel to the deck plane
(and therefore to the bow pivot axis ). For roll angles differing from zero,
the difference between the pitch angles a and a’ indicated by the bicardan
suspension and the simplest gimbal system respectively can be consider-
able.

The difference between the two angles can be calculated in the given case
from formula (8): g

tga’'=1tgacosf,

which was derived in § 1 and which links the tilting angle &’ of the inner
gimbal ring relative to the outer ring to the tilting angle a of the bow plane
and the tilting angle B of the outer gimbal ring cf the bicardan suspension
relative to the deck.

This formula can be approximated by the formula (accurate up to third-
order terms in a and B):

tgu’=u-—--5g-+—';—. (56)

On the other hand, tgae' can be expanded in the series:

o
tga'=a' +5-+...

It follows that the angle a'differs from the angle a by third-order terms
in e and B. It is easily seen that, with the same accuracy:

d=a—F. (57)

It follows that if the inner gimbal ring of the bicardan suspension is
perfectly stabilized in the horizontal plane, and if the pitch and roll angles
a and B indicated by this suspension are accurately reproduced by means of
follow-up systems as pitch and roll angles « and P on the simplest gimbal
system, the inner ring of the latter will not be horizontal. According to
(57} the so-called stabilization error will be equal to

Ad=a —a=— -‘:: .
This formula gives the amount by which the angle &’ must be increased (or
decreased, if Aa’<{0) so that the inner ring of the simplest gimbal system

is horizontal.
For a= 0,122 (7°) and B=0.262 (15°), this formula gives

Ao’ = — & — __0.0042 (14.5),

which is a relatively large error.
The difference between the pitch or roll angles indicated by kinematically
different gimbal systems having perfectly horizontal inner gimbal rings
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obviously gives the measure of the horizontal-stabilization error for the
combination of these gimbal systems. It is of course assumed that the
gimbal system housings have been mounted so accurately that the stabiliza-
tion errors dealt with in § 3 can be neglected.

Two types of gimbal systems have been examined so far: the bicardan
suspension and the simplest gimbal system. Some gimbal systems de-
signed according to other kinematic schemes will now be considered
(Figures 12—14),

The first of these gimbal systems (Figure 12) has been used in many
instruments and devices, in particular for the horizontal stabilization of
the gyrocompass follow-up sphere. This gimbal system will be denoted
by 4.

FIGURE 12 FIGURE 13

Another gimbal system, encountered in two different design variants in
some instruments, is shown in Figures 13 and 14, It will be denoted by G.

The bicardan suspension (Figure 7), which is the type of gimbal system
most frequently used in instruments and devices, will be denoted by B;
lastly, the simplest gimbal system (Figure 1) will be denoted by E. The
gimbal system E is remarkable in that the pitch and roll angles indicated
by it form, together with the angle [of rotation about the {-axis] measured
in the plane of the inner gimbal ring, a set of Euler angles.

In this section we determine the-horizontal stabilization error for the
combination of any two of the above gimbal systems, B, E, A andG.

We consider the gimbal system Bas basic, and find the relationships
between the pitch and roll angles « and P indicated by this gimbal system,
and by the gimbal systems Aand G. The corresponding relationships for
the gimbal system E have already been found and are expressed by formu-
las (8) and (57).

Consider first the gimbal system A(Figure 12). The pitch and roll
angles are taken as the ratios of the displacements u and v of the slides
K,and Kyto the length I of the rod rigidly connected to the inner gimbal
ring.

The rod ends in the sphere §, which slides freely inside the hollow
cylinder CY, connected rigidly to the upper slide.

26



The upper slide moves the distance v in the direction of the ship's longi-
tudinal axis relative to the lower slide; the lower slide moves the distance
u in the transverse direction, parallel to the deck (the inverse position
of the slides is also possible). The outer gimbal ring is parallel to the
ship's longitudinal axis. For u=v=0 the plane of the inner ring is paral-
lel to the deck plane. The ratios

v u
&=—T, E=T

represent in the gimbal system A the ship's pitch and roll angles.

v F

FIGURE 14 FIGURE 15

It is easily seen (Figure 15) that the ratios —;-and i;—represent the cosines
of the angles which the rod makes with the axes x and y (the z-axis is per-
pendicular to the ship's plane of symmetry, the y-axis is parallel to the
ship's longitudinal axis). Since the rod is oriented perpendicular to the
plane of the inner ring, which is assumed to be stabilized in the horizontal
plane, & and B should be equated respectively to the cosines of the angles
formed by the {-axis of the bicardan suspension Bwith the same axes, The
following relationships are obtained from (18):

&=

p=

sin a cos B,
(58)

LT

cosa sin B,

where

R=1y1 —sin®a sin*p.

We expand the right-hand sides of (68) in power series in a and B, and neg-
lect all terms in these variables of higher order than the third. The fol-
lowing approximations are thus obtained:

I=a ——‘2?; N
B:p—%’;. (59)
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It follows that the horizontal-stabilization errors for the combination
of the gimbal systems Aand B are expressed by the formulas

Al—=8—a =_::_z ’
(60)
Mh=p—p=—3.

We consider now the gimbal system G (Figure 13 or 14). The roll angle

is determined here, in the same way as in the bicardan sus pension B, as
the angle of tilting of the outer ring relative to the ship's deck (about the
y-axis, parallel to the ship's longitudinal axis).
The pitch angle, which will be denoted by a% is de-
fined here as the angle of tilting of the bow P about

4
t S the z-axis which is perpendicular to the ship's plane
* of symmetry (Figure 13).
¥ The bow P moves the arc 4, connected to it by
the bearing B; the axis of the bearing B, which will
be denoted by 2* is perpendicular to the z-axis and
lies in the same plane.
o
C'\t

The arc 4 moves in its turn the inner gimbal
ring, to which it is connected by means of two
hinges H.

The hinges H lie in the plane of the inner gim-
bal ring on the ship's course line (the 7%-axis),

FIGURE 16 i.e., on the line perpendicular to the axis of tilting
t of the inner ring relative to the outer ring.

The axis of the bearing B (the 2*-axis) is perpendicular to the ship's
course line (the 7-axis). According to (18), the direction cosines of the
7-axis relative to the coordinate system zys are respectively

cos T = % sin a cos B sin B,

cosw:%—coaa. (61)

cos m=T’f sin a cos®B.

On the other hand the z*-axis forms an angle a®with the z-axis and lies
in the yz plane (Figure 16). The direction cosines of the z*-axis relative
to the zyz system are therefore:

cosz*z= 0,
cos 1*y——sina®, (62)
cos 3*3=cosa®.

The condition of orthogonality of the two axes 7 and z* is defined in analyti-
cal geometry in the following way:

€0s 7z cos z*z - cos Y cos 2%y - cos y3 cos 3*3=0.
Inserting the corresponding cosines from (61) and (62) we obtain

—%cosa sin a* +_Ii? sinacos®fcosa®* =0, (63)
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" .whence

tg a®* —=tgacos®f. (64)

The last formula is the required relationship between the pitch angle a*
indicated by the gimbal system G and the pitch and roll angles & and B in-
dicated by the bicardan suspension B, This formula can be approximated
by the following expression, accurate up to and including third-order terms
in e and B:

tgacos’Bz(a—i--‘;-)(i ——«%—)’=¢+—'§——-aﬂ‘. (65)

The following formula is obtained by following the same procedure as
in the derivation of (57):

tga‘:a‘-]—-‘ls.i:a-}-%——apz, (66)
whence, with the same accuracy:
a* =a—af? (67)

It is thus seen that, when the gimbal system G and the bicardan suspen-
sion Bact in conjunction, there is a horizontal stabilization error in the
pitch angle only, and its value is given by

Aa®* = a®*—a=—aB% (68)
The horizontal stabilization errors when the bicardan suspension Bacts

in conjunction with any of the gimbal systems E, A4, or G can therefore be
tabulated as follows

Gimbal system type B E A G
Pitch angle error 0 — .Egl __322’_ —af? (69)

Roll angle error 0 0 —3;1 0

The horizontal stabilization error for the combination of any two of the
three gimbal systems E, A, G is obviously equal to the difference between
the values given in the corresponding columns of this table. The pitch
angle error for the combination of gimbal systems Aand E is thus zero
(more exactly, its magnitude is of an order higher than the third in a and p.

while the roll angle error is equal to — -‘-zi. This means that if the pitch and

roll angles of the gimbal system E, whose inner ring is accurately stabilized
in the horizontal plane, are reproduced by means of follow-up systems as

pitch and roll angles in the gimbal system A, then the error _.E;;E should be

added to the pitch angle in order that the inner ring of gimbal system Abe
horizontal.

Within the above limits of accuracy, the pitch and roll angles indicated
by any of the gimbal systems B, E, 4, and Gcan be assumed to be « and .
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§ 5. Variation of the polar coordinates of a fixed point
caused by horizontal stabilization errors
(analytical treatment)

Consider two gimbal systems the axes of whose outer gimbal rings are
paralleltothe ship's longitudinal axis. Let the inner ringofthe first gimbal
system be accurately stabilized in the horizontal plane, while the inner ring of
the second gimbal system is stabilized at a certain pitch angle error Aa and
a certain roll angle error Ap.

We denote by e, and ¢, the polar coordinates of a given point S relative to
the first gimbal system's inner ring, accurately stabilized in the horizontal
plane. The coordinate ¢, (Figure 17) is
the so-called elevation angle, i.e., the
angle between the line v, connecting the
center of the gimbal system with the
point §, and the plane of the first gim-
bal system's inner ring (or, in other
words, the angle between the line v, and
its projection g, on the plane of the inner
ring).

The coordinate ¢, is the so-called
course angle of point §, i.e., the angle
between the ship's course line % and the
line g, (or, in other words, the angle be-

FIGURE 17 tween the ship's course line %, and the
plane containing the point § and the
center of the gimbal system, perpendicular to the plane oftheinner ring).

The ship's course line n, has already been defined (§ 1, p. 10) as the line
lying in the plane of the inner gimbal ring and parallel to the ship's longi-
tudinal axis at zero pitch angle (i.e., when the planes of the inner and outer
gimbal rings coincide).

The course angle ¢, is measured clockwise from the course line 7. For
$,= 90°, for instance, the point S is situated on the ship's starboard.

The polar coordinates of the same point §, referred to the inner ring of
the second gimbal system (which is inaccurately stabilized in the horizontal
plane), will be denoted by e, and ¢,.

It will be assumed that the point § is situated at such a distance that the
lines connecting this point with the centers of the gimbal systems can be
considered as parallel.

Our aim is to determine, with an accuracy sufficient for practical needs,
the differences

de=e,—s;, Ap=¢,—¢; (70)

for given values of the pitch and roll angles a and §, the horizontal stabiliz-
ation errors Aa and AP, and the polar coordinates & and ¢,.

The analytical solution of this problem (its geometric solution will be
given in § 6) requires knowledge of the direction cosines of the coordinate
system g€, (fixed to the inner ring of the first gimbal system) relative to
the coordinate system §,n(, (fixed to the inner ring of the second gimbal sys-
tem). It will be assumed that the axes of these systems, and likewise the
axes of the systems %5 and Z,y,%, fixed to the gimbal system housings,

30



+ are oriented in the same way as in § 2, and that the axes of the systems
I)iY1%5 and Zy,2, are respectively parallel,
The direction cosines of the system ¢y, relative to the system z,2, are
identical with (20) of § 2:

n h ]
[ cos B, 0 —sin §,
n 7;? sin a, cos B, sin B, R’—l cos a, -1;—1 sin a, cos*p,
G —}'r cos a, sin B, - T;T sin a, cos B, %l- cosa, cos B,

where
R,= V1 —sin%a, sin?§,.

The direction cosines of the system Em{, relative to the system zyy,2, are
identical with (21):

Zy h 4
N cos B, 0 —sin f,
N ;—! sin a, cos B, sin B, T:;— cosa, R‘—' sin a, cos*B,
¢ %’cosa,sinﬂ, —%Tsina,cosﬂ, ;—'cosa,cocp,

where
Ry==V1 —sin%a, sin®B,.

Since the angles g, and B, differ from the angles a, and B, by the small
errors Aa and AB:
@y =a, - Aa, 1)
=P 1+ 4B,
it follows that the corresponding elements in (20)and (21) differ only slightly.
The following expressions are obtained, accurate uptothefirst-order terms
in the stabilization errors and up to and including second-order terms in a

and B;:
cos By = cos B, — AP sin B, = cos B, — AB « B,,

sin B, = sinp, + 4B cos B, = sin B, -+ ap(1 —-;.p;) .
CoSay==CcoSa, — Aa « @,,
sin a, = sin a,-}-Aa(i —%a}) .

The following formula is obtained in the same way as (43):
1 1

_ 2 (1 d (1 \_
7 =7 5 (7)) + 8 (F)=
1 €0S a; £in a, sin? B, sin?® a, cos B, sin B,
_— Aa 1 1 Al 1 . 74
ot A (74)
This formula is simplified by neglecting third-order terms in a;and B

(72)

(73)

T{gﬂ_;gi‘ (75)
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The following expressions are obtained from (72) and (73) with the same-

accuracy:
sin a, cos B, sin B, = sin q, cos B, sin B, 4-

+A¢(i —-;— a})cosp, sinB, —AB - B, sin a, sin B, 4-

0B (1 — 5 81) sin o, cosp, = sin & cosfysinfy +-8a - By 0P m

sin o, costP, = sina, cos B, + Aa (1 — 3 at) cos*p,— 248 - sina, =2
= sin g, cos®B, - Aa (1 — 3ol — 1) — 208
and cos a, sin By = cos 2, sin Px—Aa-ale+AP(1—-;-¢:——} ®).
sin oy cosy=sin @, cosp, +da (1— Jal— 5 B) —0B-afy,  (17)

cosa, cosB,==cosa, cos B, —Aa . a; — 4B - B;.
Inserting formulas (72) —(77) into (21), we obtain

2 4] 3
& WPI_AF'PI 0 —sinfy —
§
-1~z #)
73 sine;cosB;sinf, 4 cosa; —Aa - ay sin a; cos2 B, +

+8a.p+ 489

{2 cosasinfP;—Aa-a)f; +

3
+Ac(1— "t )_
—20B-af  (78)

— gin aycos B, +-48-a;8; — €08 ay cos Py —

—Ada-ay—AB-B

AT RV .4

The axes of the coordinate systems Zyy,% and z,% are respectively
parallel. The direction cosines of the system gmf, relative to the system
&G, are therefore obtained from (20) and (78), by using the well-known
formulas of analytical geometry of the type

cos*t z }cos*fy -}-cos*tz =1,

cost z cosnz 4 costy cosqy +cosks cosnsz =0, (79
and by neglecting third-order terms in @, and By:
& " G
b 1 —A4B-a, —Aﬂ(i —%-ai)

{

o M : salt—3B)~ 4
’ —8p-ap,
1
G o(—da) —se(—tR)F 8
480,
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It will be shown in the next section, how (80) can be derived more simply
by using the formulas of small rotations of a rigid body.

Consider now a unit length of the line p, which connects the point § with
the center of the first gimbal system (Figure 18), Its projections on the
axes of the §nt, system are

cose; sin¢,, coss,cosd,, sine,. (81)

FIGURE 18

The projections of the same length (or, which is the same, of a unit
length of line vy, parallel to vy) on the axes of the §{mf, systems are
given similarly by

coss, sin, cose,co8¢, sins,. (82)

These same projections can, however, be found in another way. The
projection of a unit length of the line v, on the §,-axis is the sum of the
projections on this axis of three lengths lying on the axes §,, %, and {; re-
spectively, representing the projections on these axes of the unit length
of the line p,, i.e,,

cos e, sin $, ==cos ¢, sin ¢, cos &k, -
etc }-coss, cos §, cos n,8,-}-sin ¢, cosCE, (83)

Using (80), these formulas become

€08 &, Sin ¢y ==cose, sin §, —cos s,cos$,AB-a, —sin n,Ap(i -—-;-q) '
cos €, 08 ¢, == cos ¢, sin §,AB - &, -} cos s, cos §;

+-sins, [Ac(i —-;-ﬁg)—-Ap.alp,] .
sin &= coss, sin $,48(1 — 7-a?) + sin e, + (84)

+ cose; cosg, [ —ta(1 —75)+ 8- o, -

Since ¢;=¢,and ¢y==¢, for Aa=AB=0, the expansions of the differences

de=e,—¢, Ap=¢,—9,
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in powers of Az and AB contain no free terms. The terms containing powers
and products of these differences should therefore be neglected in the calcu-
lations, since only first-order terms in Aaand Aﬂ were retained. This yields

cos e, sin ¢y == cos ¢, sin ¢, — sin ¢, sin §,Ae - cos ¢, cos $,A$,
€08 ¢, €03 o = COS 8, COS $, — Sin ¢, cos §;Ac — cose, sin §,A}, (85)
sin e, ==sin ¢, -}- cos s,As.

The following three equations are obtained for As and A¢ by comparing
(85) and (84) and simplifying:

—sine, sin $,Ae -} cose, cos $,A¢ —=—coss, cos $,AB - @, —
— sine,8B (1 —-—;-a:);
—sin ¢, cos §; As — cos e, sin §,Ap =cose, sin §, AB - 2, -
+sin o [8a(1 —351)— 8- @, (86)

cos ¢,Ae = cos ¢, sin §,48 ( — %— ¢g) +

~+ cose, cos q»,[—Aa(i ——;-B})—}- Ap.c,p,].

Each of these equations follows from the other two. Multiplying the
first by cos¢, and the second by —sin¢, and adding term by term, yields

co8 ¢,A == —cos ¢,AB - @, — sin ¢, { cos ?,Aﬁ(i -——;- a}) +
+sin¢,[u(1 _-}pg)_ap..,p,]}, (87)

whence

A¢=—AP'¢n—igﬁ{w8%@ (i —%4{)+

+singy [ aa(1 —3)—88-0 ]} . (88)
The third equation of (86) becomes
ae=siny,88(1 —%a;)-—cosq:,[m(i ——;-pg)—-Ap-alpl]. (89)

These last two formulas give the required solution. If the terms con-
taining squares and products of the variables a, and B, are neglected, (88)
and (89) become:

Ae¢ = —Aa cos §, | AP sin ¢,;

Ap=—088 - &, — tg ¢, (8B cos §, + Aasin ). (90}
Formulas (90) are usually sufficiently accurate.
If, for instance, Aa=AB==0.008, ¢, =30°, &, =60°,

a,=0.122(7°), B,=0.262(15°),
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" then by (88) and (89):
As =—0.0025 (9),
Ay =—0.0194 (1°7"),
As =—0.0029 (10,
Ay =—0.0199 (1°8').

while by (90)

It was assumed above that the gimbal systems are mounted with a high
accuracy relative to each other. If this is not so, the horizontal-stabiliza-
tion errors and the azimuth-stabilization errors given by (55) (cf.§ 3 of
this chapter) should be taken into account in the derivation of (88) and (89).

§ 6. Geometric determination of the stabilization
errors by the theory of infinitesimal
rotations of a rigid body

Some of the problems treated in the preceding sections can be solved
geometrically using the simplest principles of the theory of infinitesimal
rotations of rigid bodies.

Infinitesimal rotations of a rigid body can be represernted by vectors
directed along the corresponding axes of rotation. A sequence of in-
finitesimal rotations of a rigid body about axes intersecting in one point
can be replaced by a single rotation, represented by a vector equal to the
geometric sum of the vectors of the given rotations, independently of the
order in which they are carried out.

This can be extended to include small rotations of a rigid body. Finite
rotations are in fact noncommutative, but for small rotations the non-

commutativity is of the second order. Consider

'}z. two bodies subjected to equal small rotations in
different sequences: in order to bring them into
the same position it is then sufficient to rotate
one of them about a suitably selected axis through
an angle of the second-order referred to the
angles of the small rotations,

Small finite rotations of a rigidbody can there
fore also be represented by vectors, oriented
along the corresponding axes of rotation. Letthe
body undergo a rotation whose vector is the geo-
metric sum of the vectors of given small rotations.

The position of the body will then differ by a
small rotation of the second-order from the posi-
tion which it would have occupied had it been sub-

FIGURE 19 jected to all these small rotations in an arbitrary
sequence. The same applies to the case when
the vector of the small rotation is separated into components.

Consider as a first example the direction cosines of the coordinate sys-
tem zy,2, relative to the system z¥,2, obtained by rotating the first system
through a small angle ¢ about an arbitrary axis (Figure 19). Let ¢,, Pyr Pr
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be the components of the vector ¢ along the axes 2, ¥;, % and let OA, OB,
OC; be unit lengths on these axes. Let Ay, B, C, be the positions which
points A,, B,, C, occupy as a result of this small rotation. As can easily be
seen from Figure 19, the coordinates of points 4y, B, C, in the coordinate
system z,3, are, to a first-order approximation in 94 ¢y, 95,

A: ( i ’ ?I" _?g);
By(—e,, 1. @) (91)
Cy( Pyr —Psr 1)

For instance, the point A;remains in place as a result of the rotation
through a small angle ¢, about the z;-axis; it moves a distance @, in the
negative direction of the $,-axis as a result of the counterclockwise rota-
tion through a small angle @, about the y;-axis; and it moves a distance ¢,
in the positive direction of the y;-axis as a result of the counterclockwise
rotation through a small angle ¢, about the z,-axis.

In accordance with (91) OA,, OB,, and OC, are unit lengths; thus, to a
second-order approximation:

0A4=VTFeEtexl (92)

The coordinates of points A,, By, and Cycan therefore be considered as
the direction cosines of the vectors OA4,, OB, and OC,, i.e., of the axes
Z,, VY, % relative to the system =z, y, 8. These direction cosines will there-
fore be

L2 1] 5
L2 1 P Py
Vs —9s 1 2 (93)

5 9 —9: 1

The Table (80) of the direction cosines of the coordinate system &,
relative to the coordinate system §mwf, fixed respectively to the inner gim-
bal rings of two bicardan suspensions, having parallel outer ring and bow
pivot axes, was derived in the preceding section. It was assumed there
that the values B, and B, of the tilting angles of the outer gimbal rings of
these suspensions relative to their suspension housings differ by the small
angle AB, and the values of the tilting angles a, and a, of the bows from their
mid-positions by the small angle Aa.

By the theory of small rotations of a rigid body the position of the co-
ordinate system g, can be considered to result from two successive
rotations of the system §y,(,, first through the angle A about the y,-axis
and then through the angle Aa’ about the {,-axis (&= angle of tilting of the
inner gimbal ring relative to the outer ring).

According to (8):

tga' =tga, cos b, (94)
from which it follows, to a first-order approximation in Az and AB:
Ad Aa
m=mcosﬁ,—1$tg¢,sinp,. (95)

It follows from (10) and (12) that
1
md:i’-cosul, R, = VT —sin’a, sin’p,. (96)
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Inserting (96) into (95) gives

Ad "(AucosB,—Apcosa,sma,sinp,) 97

According to (20) the p,-axis, about which the inner ring is tilted through
a small angle AB, has the following direction cosines relative to the system
IANCE 1 .

0, BROSN —& sin &, cos p,.

The small rotation AB can therefore be separated into two rotations
1) about the w,-axis by the angle

1
AP —=- cos a;:
B g, cos
2) about the {;~axis by the angle
—Ap sm a, cos B,.

The other small tilting of the inner ring through an angle Aa' is per-
formed about the {;-axis. The components in the system §,, y,, {, of the

resulting tilting of the inner ring are therefore, for small variations of
the angles «, and B, equal to

P==0a'=—5 (Aa cos B, — AB cos &, sin a, sin B,),

?,==APRLI cos ay, (98)

1t .
P == —Apﬂ—,sma,oosp,.

If the right-hand sides of these equations are expanded in powers qf the

variables a, and f, up to and including terms of the second order, the follow-
ing formulas are obtained:

v=oa(1—zB)—08-af,
Pp= (1 —7), (99)
g =00

The direction cosines of the aystem g, relative to the system faf; can
now be obtained by altering the symbols in (93) and using (99):

& " G
b 1 —88-4, —p(1 —+3)
W MBee 1 da(t — 7 B)—88- o,
G op(t—ga) —ae(t—zp)+ 1
+8p- 0,

This same table was obtained in § 5 by purely analytical considerations
(cf. Table 80).
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When small rotations are considered, it is important to remember
which of the given kinematically linked bodies undergoes any particular
rotation. Otherwise errors are easily made. Thus, in the case just
considered it would have been possible to consider erroneously that the
small rotation of the inner ring consists of two small rotations: AB about
the outer ring pivot axis y,, and Aa about the bow pivot axis z;. Using (20),
the following incorrect formulas are then obtained for the components of
the small tilting of the inner ring (instead of the correct ones (98)):

P, = Aa cos By;
1 . 1 .
9‘=Aa—i‘-sin a, cos B, sin ﬁ,-{-ABE-oosa,.
1 . i .
?‘=A¢§;cos¢lsm ﬂ,—-ApE—smu,oospl.

Actually, it is the bow, and not the inner ring which is tilted about ithe
a,-axis when B, varies while z,remains constant; the inner ring pivot axis
of rotation coincides with that of the bow only for =0, similarly, the in-
ner and outer gimbal rings of the bicardan suspension are not tilted about
the same axis when B, varies with &, constant (except when &= 0).

Consider now the problem of the variation of the polar coordinates of
point § as a result of inaccurate horizontal stabilization. This problem
was solved analytically in § 5.

FIGURE 20

We mount a sight on the inner gimbal ring of the bicardan suspension,
and aim its optical axis at the far-away point § (Figure 20). The angle ¢
between the optical axis and the plane of the inner ring is the angle of ele-
vation, in accordance with the definitions of § 5; the angle ¢ between the
sight's bearing axis @, located in the plane of the inner ring and the inner
ring pivot axis §, is the course angle. This angle is equal to the angle be-
tween the projection gof the optical axis on the plane of the inner ring, and
the ship's course line (the 7%-axis).

We alter by a small magnitude Aa the angle a; of the deviation of the bi-
cardan-suspension bow (not shown in Figure 20) from its mid-position,
and by a small magnitude AB the angle B, of the deviation of the outer gimbal
ring from its mid-position, thus disturbing the horizontal stabilization of
the inner ring. In order to bring back the optical axis to its original posi-
tion, it is necessary to rotate the sight platform by a certain angle 4 about
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‘the {-axis (perpendicular to the plane of the inner ring) and, by rotating
the sight about its bearing axis &, to alter the angle of elevation & by As.
The angles As and A represent the variation of the polar coordinates s and
¢ of point Sresulting from the disturbance by the angles Az and 4B of the
horizontal stabilization of the inner gimbal ring.

We fix a uvw reference frame to the sight, and let u be the sight's bear-
ing axis, v, its optical axis, and w, an axis perpendicular to both u and »
and forming together with them a right-handed coordinate system.

Consider now the angular displacement of the sight produced by the
variation of the angles a,, B,, &, and ¢.

Formulas (99), reduced (for simplicity's sake) to a first-order approxi-
mation in @, and §, become;

= Aa,
= 4B, (100)
9( _ - a‘lAp‘

The angular displacement of the sight caused by varying only the angles
a and B will obviously equal that of the inner gimbal ring. Theu, v, and w
components of this angular displacement are equal (as can be seen from
Figure 21), to
¥, 00s  — ¢, sin ¢ =Aa cos $ — AP sin ¢
(9 sin $ 4 ¢, cos ) coss -9, sine=
= (Aa sin ¢ }- AP cos §) cos ¢ — a,AB sin s, (101)
— (p; sin § - ¢, cos §) sins4-¢ coss=
= — (Aa sin ¢ -} AP cos ¢) sin ¢ — a,AB cos &.

A small variation of the angle ¢ causes a rotation of the sight about the
axis of its platform, i.e., about the {-axis; a small variation of the angle &
causes a rotation of the sight about its bearing axis, i.e., about the u-axis.

FIGURE 21

The u, v, w components of the angular displacement of the sight caused by
the variation of the angles s and ¢ will therefore be (taking into account that
A¢ <0 for a counterclockwise rotation, as viewed from the positive { direc-
tion):

Ae, —A¢sins, —Ajcoss. (102)
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The vector of the resultant angular displacement of the sight caused by
the variation of all the angles (a,, B,, s, $), will equal the geometric sum
of the vectors of the separate rotations. The u, v, and w components of this
resultant rotation are:

.= Axcos)—ABsin ¢4 Ae,
¢,= (Aasin$ 4 ABcos¢)cose— a,ABsin e—A¢sine, (103)
¢, =— (Aa sin ¢ 4 AB cos ¢) sin e — a, AB cose — A¢ coss.

The displacements of point B on the v-axis (OB is of unit length) in the
directions of the axes u, v, and w (Figure 21), are by (91):

—9u, 0, Pue (104)

The optical axis of the sight will therefore remain in place if the com-
ponents ¢, and ¢, of the resultant rotation are zero, i.e., if the following
equations are satisfied (according to (103)):

Aa cos ¢ — AB sin § - A =0,

(Aa sin ¢ -} AP cos §) sin e + a, A cos e + A cose=0. (105)

The variations of the polar coordinates of the point Sare, by (105):
Ae =—Aa cos § | AB sin ¢,
Ay == —a, AB— (Aa sin ¢ -}~ AB cos ¢§) tge.

These expressions are identical with (90) of § 5.

The component ¢, in (103) represents the small angle of rotation of the
sight about its optical axis v, caused by the disturbance of the horizontal
stabilization and the variation of the angles ¢ and ¢. When conditions (105)
are satisfied, i.e., when the sight's optical axis remains at rest, the angle
A$ can be eliminated from the expression for ¢, by means of the second
equation (90). The rotation of the sight about its optical axis then becomes

_Aasin¢+ABws1l (106)

This derivation is based entirely on a geometric consideration.

§ 7. Variation of the ship's roll and pitch angles
and of its course caused by a finite rotation of the

ship about an arbitrary axis

Laboratory tests of gyroscopic devices such as the gyroazimuthhorizon
are frequently carried out by rotating the housings of these devices through
finite angles about an inclined axis. If gyroscopes stabilize the inner ring
of the bicardan suspension (Figure 7) in the horizontal plane and stabilize
in addition a certain direction in this plane, then, when the housing is ro-
tated, the suspension scales will indicate the pitch and roll angles & and B,
while the inner ring will indicate the variation of the angle 1 between the
course line and the stabilized direction in the horizontal plane.
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) We must now determine the magnitudes of the angles «,B, ¥ from the

specified rotation of the bicardan suspension housing from its initial posi-
tion (at which a= B=0) and from the specified disposition of the axis of this
rotation relative to the housing.

This problem is equivalent to the problem of determining the variation
of the ship's pitch and roll angles and course for a finite angular displace-
ment of the ship from one position to another one. In fact, according to a
well-known theorem of kinematics, such a displacement can be obtained by
means of a single finite rotation of the ship (neglecting translatory motion)
about a suitable axis. Conversely, the pitch and roll angles and the course
determine uniquely the orientation in space of a ship whose location is given.

FIGURE 22 FIGURE 23

It should be noted that the replacement of a specific motion of a gyro-
system housing by some other simplified motion may in many other cases
lead to errors: this will be discussed in Chapter II, § 3.

Using the notation of § 1 (Figure 7), we assume a coordinate system zyz
to be fixed to the bicardan suspension housing, with the z-axis directed
along the bow pivot axis, the y-axis along the pivot axis of the outer gimbal
ring, and the g-axis perpendicular to these two and directed upward.

We denote by u (Figure 22) the axis about which the housing of the bi-
cardan suspension can rotate together with the system zyz. We further de-
note by 0 the angle between the u-axis and the zy plane, and by ¢ the angle
between the z-axis and the projection of the u-axis on this plane.

Consider now an auxiliary coordinate system uww (Figure 23), in which
the u-axis is, as above, the axis about which the bicardan suspension hous-
ing can rotate; the »-axis lies in the zy plane and is perpendicular to the
projection of the u-axis on this plane; the w-axis is perpendicular to the
axes # and v and forms together with them a right-handed coordinate sys-
tem. The angle between the axes w and z is obviously equal to 0.

It is seen from Figure 23 that the direction cosines of the system zyz
relative to the system uvw are:

z v z
u cosfcos¢ cosOsin¢ sin 0
v —sin¢ cos ¢ 0 (107)

w —sinfcos¢ —sinOsin¢ cos b
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Assume, in accordance with the formulation of the problem, that the zy . ’

plane was horizontal before the rotation of the suspension housing about
the u-axis. Introduce two fixed coordinate systems z%%° and u%*w®, whose
axes coincide respectively with the axes of the coordinate systems zyz and
uvw before the rotation of the housing. The 2% plane is thus horizontal.

w‘

FIGURE 24

The direction cosines of the system z%%° relative to the system u%w®
are obviously identical to the direction cosines of the system zyz relative
to the system avw, given by (107):

o ¥ 2
u® coslcos$ cos 0 sin ¢ sin §
¥ —sin¢g cos ¢ 0 (108)
w® —sinfcos$p —sinbsing cos 0

After the rotation of the housing through an angle ¢ about the u-axis
(Figure 24), which remains identical with the u%-axis, the direction cosines
of the system uvw relative to the system u%%u® will be:

u® v° w®

u 1 0 0
v 0 cosp sine (109)
w 0 —sing cose¢

The direction cosines of the system unw relative to the system z%%° are
found from (108) and (109):

€0s 2% == cos 2°u® cos vu® -} cos 2% cos vv° -} cos 2% cos v =
= -—sin ¢ cos g —sin 0 cos ¢ sin ¢.

The direction cosines are:

20 ¥ f
3 cos0cos ¢ cosOsin ¢ sin 9
v —sindcosp— cos ¢ cosp — cosOsin¢
—sinfcos ¢ sing ——sin0sin¢sing (110)
w sin ¢sine — —cos¢sing — cos0cos
—sinfcos ¢ cos ¢ —sinfsin$cos ¢
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Tables (107) and (110) determine the direction cosines of the system uvw
relative to the systems zyz and z%%°. The direction cosines of the system
zys relative to the system 2%%0 can therefore be obtained from them:

x0 ) 0
z pcosdcosty-|-cosy p cos 0 cos ¢ sin - psinlcosy—
+sin0siny —coslsindsing
y ncos0cossing— pcos@sin?¢-}-cosy psinfsin¢ 4
—sinbsing +cosOcosgsing (111)
s psinOcosy- psin0sin¢— {1 — cos ¢) sin20 4
+ cosO0sinysing —cosfcos¢sing 4 cosy

where
p= (1~ cos¢)cos?.

Table (111) gives the direction cosines between two coordinate systems
obtained from each other by means of a finite rotation through an angle ¢
about an axis passing through their origin.

The inner ring of the bicardan suspension is stabilized in the horizontal
plane. The {-axis which is perpendicular to the plane of the inner ring
coincides therefore with the z%-axis which is perpendicular to the horizontal
plane; their direction cosines relative to the axes z, y, 2 are respectively
equal.

The direction cosines of the system ¥ (fixed to the inner ring of the
bicardan suspension) relative to the coordinate system zyz are given by (18):

z y z
£ cos P 0 —sin B
7 T‘isinacospsinﬂ %oosa T’i-sinacos’p
14 -;";-cosasinp -—%—sinacosp %cosacosp

where
R=y1—sin%a sin'F .

The following equations, obtained from (18) and (111), express the equal-
ity of the direction cosines of the axes { and z° relative to the axes z, ¥ z
% cos a sin B=(1— cos ¢) cos 0 sin 0 cos $ — cos 0 sin ¢ sin ¢;
{

— g SinacosB=(1 — cos¢)cosOsinOsing 4-cosOcos  sing;  (112)

%cosa cos B=(1 — cos ¢) 8in28 - cos 9.
Each of these equations follows from the other two.
Using equations (112), the angles of tilting & and B of the bow and the
outer ring relative to the housing can be found for given angles ¢, 0, ¢.
If the angles 6 and ¢ are assumed to be small, the first two equations
of (112) become, to a second-order approximation in 6 and ¢:

a=—¢cosy, P=—¢sin¢. (113)
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Formulas (113) become more accurate if we retain third-order terms
in 8 and ¢ in the expansions of the right-hand sides of (112), and insert
(113) into the terms of higher order in a and B in the expansions of the
left-hand sides of (112):

a=—¢ cosqa—ﬁ%’- sinqa+%1wsqt — 3;—s-oosqasin’q».

(114)
B=—q>sinqa+!§icosq:+°—;’;sin¢-—% cos®* ¢ sin §.

The coordinate systems gk, zyz, and 2%°%° coincide for ¢ = 0; when
¢ # 0, the coordinate system £7{ is rotated about the {-axis relative to
the fixed coordinate system z%%® by a certain angle 7 (Figure 25). The
following relationship is obtained from (18) and (111):

sin y==cos §y®=costz cos y°z -} cos {y cos y% - costzcosy’z=
= cosB[(1 — cos ) cos?0 cos ¢ sin ¢ + sin8 sinp] —
— sinB[(1 — cos ¢) cos 0 sin 0 sin ¢ — cos 8 cos ¢ sin ¢]. (115)

Equation (115) defines the angle y of the rotation of the inner ring about
the {-axis for finite rotations of the housing about the u-axis. The rotation

7 yo
A
x™7
L ¢
I
R
FIGURE 25

is counterclockwise for 1>>0 (when observed from above); the course, i.e.,
the angle x between the north-south line and the n-axis, is therefore re-
duced by y when the housing is inclined (Figure 25).

Equation (115) becomes, to a second-order approximation in 6 and e:

=" + 5 ¢" cos § sin § -+ Bp cos . (116)

Inserting the second equation of (113) yields
1="0¢ — 5 ¢" cos § sin . (11

A more accurate formula for y can be obtained by retaining in the ex-
pansions of the right-and left-hand sides of (115) terms of higher order
than the second in 8, ¢, and 1.

Tiltings of the housing through the same angle but in opposite directions
about the u-axis cause different rotations from the initial position (p=0)
in the horizontal plane of the inner gimbal ring.

Numerical example. Let the suspension housing undergo oscil-
lations of amplitude ¢,= 0.300 (17°11"') about the w-axis, let the u-axis form
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an angle §=0.200 (11°28") with the horizontal plane, and let the projection
of this axis on the zy plane bisect the angle between the bow pivot axis z
and the outer gimbal-ring pivot axis y ($=45°).

The approximation formulas (113) and (117) yield:

1) for ¢=-0.300
a=—¢ cos $ =—0.212 (12°9),
B=—¢ sin $ =—0.212 (12°9)),
1="0p — ¢*cos ¢ sin ¢ = 0.0600 — 0.0225 == 0.0375(2°%);
2) for ¢==—0.300
a=-}-0.212 (12°9),
B=-}0.212 (12°9),
1=—0.0600 — 0.0225 = —0.0825 (4°43).
On the other hand the accurate formulas (112) and (115) yield:
1) for ¢=-40.300
a=—0,217, p=—0.205, 1=10.0381;
2) for ¢=—0.300
a=+40.205, p=--0.217, 1=0.0820.

The approximate formulas (113) and (117) are accurate up to the second
figure after the decimal point for @ and B, and up to the third figure after
the decimal point for 7. Formulas (114) for a and B are accurate to the
third figure after the decimal point; they yield:

for ?=—f-0.300 a=—0.217, p=-—0.205:
for ¢=—0.300 a=+0.205, B=--0.217.

The angular velocities of the bow and the outer ring relative to the
housing and the inner ring relative to an object fixed in space can be ob-

tained by differentiating the approximate equations (113) and (117). Assume,
for instance, that the law of variation with time of ¢ is expressed by

P =1, sin «f. (118)
Inserting this expression into (113) and (117) gives
& == —@, co8  sin ¢,
p=—o,sin ¢ sin ef,

=0y, sinmt——;-(p:oos?sin¢sin'ot= (119)
=—-:-cp§cosqasin ¢ 4 O¢, sin ot +-:—9:cos<psin?co|2o¢,
whence da
w= — g, cos § cos o,
& — —og, sin § cos o, (120)

21 — by, cos at — 7 gl cos ¢ sin ¢ sin 2et.

In this case the motion of the inner gimbal ring represents a super-
position of two harmonic oscillations, with frequencies ® and 2wabout the
vertical ({-axis.
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Chapter II

ORIENTATION OF GYRO-CONTROLLED OBJECTS

§ 1. The orientation accuracy of an object launched
from an inclined base

The problem of the orientation of an object moving in steady motion
shortly after being launched from an inclined base is similar to the prob-
lems treated in Chapter 1.

We denote by 3, and ¢, the heel and trim of the base at the moment the
object starts moving, and by 9§ and ¢ the heel and trim of the object during
steady motion.

As in Chapter I, §1, the trim is defined as the angle formed by the
longitudinal axis of the base or object with the horizontal plane; it is positive
when the base or object are inclined forward. The heel is defined as the bi-
hedral angle between the plane of symmetry of the base or object and the
vertical plane containing their longitudinal axis; it is positive when the base
or object are inclined to the right.

Let the object be launched from a starting device whose axis is parallel
to the base plane and forms a small angle 8 with the latter's longitudinal
axis. It will be assumed that the gyroscopic device (top) is started simul-
taneously with the launching of the object, and that at the start the top axis
is either parallel to the longitudinal axis of the object or perpendicular to
its plane of symmetry, depending on the instrument design. In the latter
case it will be assumed that when the object is on the carrying base its
plane of symmetry is perpendicular to the plane of the base.

Since the time required for the object's motion to become steady is re-
latively short, it can be assumed that the top axis has at the beginning of
the steady motion the same orientation as at the start.

The pivot axis of the outer gimbal ring of the top's gimbal system lies
in the plane of symmetry of the object, and is perpendicular to its longi-
tudinal axis. It will be assumed that the instrument is installed very ac-
curately, so that mounting errors can be neglected. Throughout the motion
the controlling instrument maintains the object in a position in which the
latter's longitudinal axis is either perpendicular to the plane of the outer
ring or parallel to it, depending upon the instrument design.

The small oscillatory motions of the object, and in particular its yaw
can therefore be neglected in the calculations, and it can be assumed that
during steady motion the angle which the object's longitudinal axis forms
with the perpendicular to the plane of the outer gimbal ring is either zero
or a right angle. The angle between the top axis and the perpendicular to
the plane of the outer gimbal ring will be denoted by B. In technical lan-
guage this angle is called the top inclination (cf.Chapter VI, § 3).
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We denote by x, the course of the base at the instant the object is
started, and by x the course of the object during steady motion, the
course being defined as the angle between the north-south line and the
projection of the longitudinal axis of the base or the object on the hori-
zontal plane (cf. Chapter I, §1).

It is easily seen that if the heel and trim of both base and object are
zero, then

x=1x,4}3, (121)

i.e., the longitudinal axis of the object remains parallel to the position
which the axis of the starting device occupied at the startx,

In the general case
x=x+3+41. (122)

The angle 7 is the error in the orientation of the object caused by the heel
and trim of the base (8, ¢,) at the start and by the heel and trim of the ob-
ject itself (8, ¢) during its steady motion.

We are trying to find a relationship 1==f(3,, ¢, 8, ¢; 3) betweenthe angle 71
and the angles &,, ¢§;, 3, ¢ for given values of the angle 8.

L b |
N ®
LY by
N e‘
S &
FIGURE 26 FIGURE 27

We introduce a coordinate system §m,(, (Figure 26), whose w-axis is
the projection on the horizontal plane of the longitudinal axis y, of the base,
and whose {;-axis is vertical and directed upward. The angle x, (Figure 27)
between the n;-axis and the north-south line defines the course of the base,
We introduce also a coordinate system z,y;2, fixed to the base (Figure 26),
with the z,-axis perpendicular to the plane of the base and directed upward,
and the y,-axis coinciding (as already mentioned above) with the longitudinal
axis of the base.

It is easily seen that the direction cosines of the coordinate system z,y,2,
relative to the system gy, are as follows:

& T G
z, cosd —sin¢sind, —cos¢,sind,
A 0 cos ¢, —sin ¢, (123)
z, sind, sin ¢, cos §, cos ¢, cos d,

* We consider here the case in which angular adjustment of the gyroscopic instrument is made to compensate
for the angle §. The latter case will be considered later.
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We also introduce a coordinate system £y, whose 7-axis is the projec-
tion on the horizontal plane of the longitudinal axis y of the object, and
whose {-axis is vertical (Figure 28). The angle x between the w-axis and
the north-south line is the course of the moving object (Figure 27).

It follows from (122) that the angle between the axes 3 and W (or, which
is the same, between the axes £ and §)is equalto 34y. The direction
cosines of the coordinate system 3, relative to the system ¢, are there-
fore

3 k]

& cos(y+3) sin(y+3)
n —sin(y43) cos(r43)
& 0 0 1

The direction cosines of the system zy,32 relative to the system g
are finally obtained from (123) and (124):

Q O «

(124)

3 ] 14
z; cosdycos(y4d)+ cos ¥, sin (7 4-8) — —cosd;sind,
- sin{y sin 8; sin (y+3) —sin¢;sind cos(14Y)
¥, —cos¢;sin (74 3) cos ¢, cos (7 4+ 8) —sindy (125)
EY sin 8; cos (14 3) — sin 8; sin (7 +§) + cos; cos b,

—sin¢ycos ¥, 8in (Y4+3) < sind, cosd, cos (74 b)

Consider first the design of a gyroscopic control instrument with the top
axis parallel to the object's longitudinal axis at the start, and therefore
parallel to the axis of the starting device.

FIGURE 28 FIGURE 29

The projection of a unit length £ of this axis on the axes z,, y,, and gz
fixed to the base are equal to (Figure 29):

t,, =sin3,
t,, == cos3}, (126)
t,=0.

The projections of this unit length on the axes §, », and { can now be
found by the well-known formula of analytical geometry:

b =t, cosz;t - t, cosy,t -t cos k.
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" The following expressions are obtained:

t,= [cosd, cos(y-{3)sin¢,sind,sin(y +3))sin3—

— cos §, sin (Y 8) cos 3,

t,= [cosd;sin (y-{-8)—sin ¢, sin d; cos (14 3)] sin 3+ (127)
-+ cos ¢, cos (74 3) cos?,

t =—cos ¢, sin §,sin 3 —sin ¢; cos d.

¢

Since the top axis maintains its direction in space, formulas (127) are
also true for the projections of a unit length of the top axis on these same
axes.

Consider the projections of this unit lengthonthe axes of the system zyz fixed
to the moving object. The longitudinal axis of the object is perpendicular to
the plane of the outer gimbal ring. It follows (Figure 30) that the top axis H
lies in the plane of symmetry of the moving object and forms an unknown
angle B with the longitudinal axis (top inclination). The projections of unit
length ¢t on the axes of the coordinate system zyz are equal to

t,= 0,
t,= cos, (128)
t,=—=—sinB.

3

/t:y
< [ "

FIGURE 30

The direction cosines of the system zysz relative to the system §y{ are
identical with the direction cosines of the system zy,5 relative to the sys-
tem gm,€, given by (123),

3 L ¢
z cos® —sin¢sin® —cos¢sind
y 0 cos¢ —sin¢ (129)
z sind sin ¢ cos 8 cos § cos §

The projections of unit length £ on the axes §, %, and { can now be found
from (129) and (128):

t =—sin 8 sinp,
t,=cos¢cosp—sin¢cosdsinp, (130)

t,==—sin ¢ cos p— cos ¢ cos d sin p.
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Formulas (127) were previously obtained for the same projections. The |
following three relationships are obtained by equating the right-hand sides
of (127) and (130):

[cos 8, cos (1 - 8) 4-sin ¢, sin 3, sin (14~ 3)] sin 3 —
— cos ¢, sin (14 3) cos 3= —sin ¥ sin B;

[cos 3, sin (1} 3) —sin ¢, sin &, cos (y-}-3)] sin3}- (131)
~+ cos ¢, cos (1 4 3) cos E=cos$ cos p—sin$ cos I sinf;
—cos ¢, sind, sin3—sin ¢, cos3 =—sin ¢ cosp—cos ¢ cos I sinp.

Only two out of these three relationships are independent. The unknowns
are the angles P and 1, and the angles &,, ¢,, 3, ¢, 8 must be given.

For 3=0 and ¢ =0 (i.e., when the axis of the starting device is parallel
to the longitudinal axis of the base, and the trim of the object is zero),
(131) becomes

—cos §, siny=—=—sin § sin B,

cos¢, cosy= cosP, (132)
—sin ¢, = —cos ¥ sin .

Dividing both sides of the first of equations (132) by the respective sides
of the third of these equations, we obtain

siny=1tgdtg¢,. (133)

Fhis formula gives the angle 7 for $=0, ¢=0.
For ¢,=4°and §=10°,

sin1=0.0123; y=462".

Formula (133) could be obtained more simply by assuming from the
beginning that the trim of the moving object is zero and that the axis of its
starting device is parallel to the longitudinal axis of the base. It then be-
comes clear why the value of the base heel angle ¥, has in this case (and also
in the case 3=0, ¢ 240} no influence on the value of the error 7 in the course
of the moving object and therefore does not appear in (133).

We assume that the angle 3 between the axis of the starting device and the
longitudinal axis of the base, and the object trim ¢ are of the order of sev-
eral degrees. The numerical example using formula (133) shows that the
deviation yof the object from the course caused by the heel of the object and
the trim of the base is also small. The angles 8, ¢, and ywill therefore be
considered so small that their squares and products can be neglected. The
expansion of the right-and left-hand sides of equations (131) neglecting all
terms of higher order than the first in 3, ¢, tyields:

3cos ¥, — (Y4 3) cos ¢, = —sin ¥ sin B,
—3sin ¢, sin &, } cos $, = cosp— ¢ cos d sinp, (134)
—3cos¢,sin ¥, —sin ¢; —=—¢ cos— cos ¥ sin .

Multiplying the second equation of (134} by ¢, adding to the third equa-
tion of (134), and neglecting second-order terms in 3 and ¢, yields:

—3cos ¢, 5in 3, 4 ¢ cos ¢, — sin §; = —cos ¥ sin B. (135)
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) Dividing both sides of the first equation (134) by the corresponding sides
of equation (135) gives, after some simplifications, the required formula:

1=tg%tga—{-(%sl-l-sinbltg&—i)l—?tg!. (136)

Numerical example. Let

$,=8% ¢=4° 8=10° ¢=-—2° ¥=6°,
then
1=0.0123 4- 0.0017 4 0.0062 =0.0202 (1°10’).

Formula (136) and the numerical example show how important it is for
orientation accuracy to obtain as small a steady-motion heel angle 8 of the
moving object as possible. This applies to a gyroscopic instrument in
which the top axis coincides, at the beginning of the motion, with the longi-
tudinal axis of the object.

Consider now an instrument whose top is started in a position in which
its axis is perpendicular to the object's plane of symmetry. It was as-
sumed above that the object's plane of symmetry is perpendicular to the
base plane when the object is still in the starting device. The projections

2

\

FIGURE 31 FIGURE 32

of a unit length pof the top axis on the axes of the coordinate system z,y,z,
fixed to the base are (Figure 31):

Ds,= co83,
Py, = —sind, (137
Ps, = 0.

The projections of this unit length on the axes of the coordinate system
§7C can be found by using Table (125) of the direction cosines of the system
2,5 relative to the system §Ei:

pe =[cos 8, cos (4 3) -} sin ¢, sin 8, sin (y - 8)] cos 3+
+ cos ¢, sin (1} 3) sin 3;
p,==[cos 3, sin(y -} 8) —sin ¢, sin 3, cos (14-3)} cos 3 — (138)
—cos ¢, cos (Y-} 3) sin 3;
Py = —cos ¢, sin &, cos3-{-sin ¢, sin 3.
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We now find the same projections as functions of the angles &, ¢, and B
referred to the moving object. Due to the action of the control system the
longitudinal axis of the object lies in the plane of the outer gimbal ring and
is therefore parallel to the pivot axis of the inner gimbal ring. The projec-
tions of p on the axes of the coordinate system zyz fixed to the moving ob-
ject are (Figure 32):

Pa=— 0089,
p= 0, (139)
pP,=—sinp.

The following expressions are now obtained from (129) for the projec-
tions of p on the axes of the coordinate system g+(:

p= cos & cos p — sin 9 sin B;
p,=—sin ¢ sin 3 cos p— sin ¢ cos 8 sin B; (140)
Pp==—cos ¢ sin & cos B — cos ¢ cos & sin .

Three equations, each of which follows from the other two, are obtained
by equating the right-hand sides of (138) and (140):

[cos 8, cos (1 4 %) - sin ¢, sin 8, sin (14 8)] cos 34
- cos ¢, sin (y - 3) sin == cos 8 cosp — sin & sin g;
{cos 8, sin (1 4 3) — sin ¢, sin &, cos (1} 3)) cos 3 —
— cos ¢, cos (1 -} 3) sin 3= —sin ¢ sin® cos p — sin ¢ cos 8 sin f;
— cos ¢, sin §; cos 3+ sin ¢, sin 3=
= —cos ¢ sin 9 cos p — cos ¢ cos & sin P.

(141)

The unknowns in (141) are the angles P and 1.
Dividing both sides of the second equation (141) by the corresponding
sides of the third equation gives:

[cos 3, sin (14 3) —sin¢, sin &, cos (7 + 8)] cos 3 —cos ¢, cos (y 4 B) sin8
— cos ¢; sin §; cos 8 + sin ¢, sind -

=tg9¢. (142)

It follows that the error 1 in the course of the moving object is in this case
(top axis perpendicular at the start to the object's plane of symmetry) in-
dependent of the object's heel §. This is easily understood, since the inner
gimbal-ring pivot axis of the top is parallel to the object's longitudinal axis
during steady motion of the latter.

For $=0 (the object has no trim) (142) becomes

gy +y= —Thithbomhigd (143)

If, in addition, 3=0 (the axis of the starting device is parallel to the
longitudinal axis of the base), then (143) is simplified to

tgy=s=sin ¢, tg 9. (144)

Formula (144) can also be obtained more simply by assuming from the
beginning that the angles 3 and ¢ are zero,
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In the general case ($9&0, 3»%0)the angles ¢, 3, and y will be assumed
to be small. Equation (142) can then be written, with an accuracy of up to
first-order terms in ¢, 3, and y, in the form:

(1+3)cosd, —sin¢,sind, —Vcos §y==—¢cos ¢, sind,, (145)

whence
cos 1‘1

y=sin qaltgﬂ,-{-(m—i)B—qocos b 18 8, (146)
Consider a numerical example for the same angles as before:
9,==8% ¢, =4% ¢=-—2° 8=10% 3=6°.
In this- case the course error of the moving object is:
1 =0.0098 4- 0.0008 - 0.0049 == 0.0155 (52").

We now return to the first design variant and consider the case of the so-
called angular setting of the instrument at an angle 3 to the left. The instru-
ment must have some device causing the control system to bring the object
to a position such that the perpendicular J to the plane of the top's outer
gimbal ring forms an angle 3 with the longitudinal axis y of the object
(Figure 34). As a result, the object turns through an angle 3§ after leaving
the base, so that the course of its steady motion will be identical with the
course of the base at the start. We again denote by 1 the error in the mov-
ing object's course.

N "q

e~

$ !

FIGURE 33 FIGURE 34

In this case (Figure 33), the angle y will be the angle between the axes
t and §, or, which is the same, between the axes 5 and w, of the coordinate
systems &y{ and §m(,. The direction cosines between the axes of these
two coordinate systems must be of the form:

3 n C
1 cost sinT 0
7 —siny cosy 0
G 0 0 1
This result is obtained from (124) by replacing the angle 743 by the
angle y.
In the same way we obtain directly from (127)the projections of ¢ on the
axes of the coordinate system, Ey{, without having to find the direction

(147)
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cosines of the system xy,f; relative to the system gx(:

t,= (cosd,cosy-}sin ¢,8ind,siny) sin 3 — cos ¢, sin 7 cos 3;
t,=(cosd, siny — sin¢,sind, cos 1) sin 3 4~ cos $, cos 7 cos 3; (148)
¢, =—cos ¢, sin 8, sin & — sin ¢, cos 3.

We now introduce the coordinate system 2'yZ fixed to the outer ring of the
top's gimbal system (Figure 34). The Z-axis of this system coincides with
the z-axis of the system zyz fixed to the moving object; the z’-axis is the
pivot axis of the inner ring of the top's gimbal system. The direction
cosines of the system Zy7 relative to the system zyz are

z ¥y z
£ cos8 —sind 0
y sin? cosd 0 (149)
s 0 0 1

since during steady motion of the object the angle between the axes y and y
equals 8§.

The top axis Hlies in the y’¥ plane and forms an angle B with the y/-axis
(Figure 34). The projections of unit length tof the rotor axis Hon the axes
of the coordinate system Y7 are

ty—= on
"’ = Ccos p, (150)
t,, =—sinp.

The projections of ¢ on the axes of the coordinate system zyz are
t,= cosPsing;
t,= cosBcosd; (151)
t,——sin.

This follows either from (149) or directly from Figure 34.
The projections of ¢ on the axes of the coordinate system Ey{ are there-
fore

t‘= cos 8 cos P sin 3 — sin & sin B;
t,——sin ¢ sind cosPsind - cosycosPcos? — sin§cosd sin B; (152)
t,=—cos ¢8in d cosPsin3 —sin$cosPcosd —cos ¢ cos § sin .

This follows from (151) and (129),

The following three equations (only two of which are independent) for
the unknowns B and 7, are obtained by equating (152) to (148):

(cos 9, cos 1 - sin ¢, sin 8, sin 1) sin 3 — cos ¢, sin ycos 3=
=cos 8 cos B sin 3 — sin  sin p;
(cos d, sin 1 — sin ¢, sin 8, cos 7) sin 8§ cos ¢, cos y cos 3=
= sin ¢ sin & cos P sin 3 - cos ¢ cosP cos 3 — sin ¢ cos § sin B;
—cos ¢, sin 3, sin 8 — sin ¢, cos 3=

=—cos ¢ sin 8 cosP sin 8 — 8in ¢ cos f cos 3 — cos ¢ cos & sin f.
If all terms of higher order than the first in 7, 8, and ¢ are neglected,
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these equations become
3cosd; —ycosp, =38 cosd cosp— sin & sin P,
—3 sin ¢, sin 8, 4 cos $, =cos B — ¢ cos  sin B, (153)
—3 cosy, sin &, — sin ¢; =—3 sin & cosp — ¢ cosp — cos & sin B.
We multiply the second equation of (153) by —3ces # and add it to the
first; we also multiply the second equation by ¢ 43 sind and add it to the

third. Neglecting terms of higher order than the first in 3and ¢, we
obtain:

3cos &, — ycos ¢, — 3 cos ¢, cos § = —sin & sin B, (154)
—3cos ¢, sin 8, — sin §; } cos ¢, ($ 4 3 sin ) =-—cos d sin .
Dividing the first of these equatioﬁs by the second yields:
- -3
3cosd; — ycos, cos¢; cos d =tg?. (155)

—Bcosy; sind, —sin¢; 4 cos¢,; (y + 3sin )
This equation contains only the unknown 7, and its solution is

1=tgvpltg8+($;:+sinOIth—c—(—é-.-)B—?th. (156)

This formula differs only slightly from (136) obtained for the case when
the moving object starts with zero angular setting. Using the same values
of the angles,

9, =289 ¢,=4° $=10°, ¢=—2°
equation (156) gives
1=:0.0123 4- 0.0001 +4- 0.0062 —0,0186 (1°4’).

Formulas (136) and (156) show the importance of obtaining as small an
object-heel angle as possible, for accurate orientation, in the case of the
first design variant of the gyroscopic instrument (top axis parallel to the
object's longitudinal axis at the start). For zero heel angle § the error ¢
is of the order of two to five minutes of an arc.

When the object starts from a horizontal base, $,=0, ¢,=0, =0, and
therefore, according to (136):

1= —Ptgdx= —¢b. (157)

If the object has a trim ¢ <0 during steady motion, the angle 1 will be ne-
gative for $<C0 (heel to the left), which corresponds to a deviation of the
object to the left of the specified direction. For a heel to the right, the
object will deviate to the right during steady motion,

The value of this deviation can be considerable. Thus, for ¢—= —2° and
8 =—10°:

1= —0.035.0.175 = — 0.0061 (21).

§ 2. Deviation of a self-guiding missile from the
specified direction during flight

Problems similar to those discussed above are met in missile flight
theory. We solve one of these problems in this section.
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As an example consider the German V-2 rocket in which flight control
is by two free gyroscopes. The pivot axes J and z” of the outer gimbal
rings of the gyroscopes are set perpendicular both to the axis of symmetry
2 of the rocket and to each other (Figure 35).

FIGURE 35

The rocket is placed vertically on the launching pad, and the y'-axis
(the pivot axis of the outer gimbal ring of the so-called gyro-verticant)
is aimed at the target by rotating the rocket about the vertical. As are-
sult the #'-axis (the pivot axis of the outer gimbal ring of the so-called
gyrohorizon) becomes perpendicular to the vertical plane 1 (Figure 35)
which contains the straight line connecting the rocket-launching pad with
the target.

The axes of the gyro housings or, which is the same kinematically,
the pivot axes (; and {; of their inner gimbal rings, are set on the launching
pad parallel to the axis of symmetry % of the rocket and are therefore
vertical.

The rotor top axis §; of the gyro-verticant is set on the launching pad
perpendicular to the y{ plane and maintains this orientation throughout the
rocket flight (if instrument errors of the gyro are neglected). The axisy,
of the gyrohorizon rotor is oriented parallel to the horizontal axis % and
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remains parallel to this direction throughout the flight (again neglecting
instrument errors). The Earth's rotation is neglected.

Consider the following coordinate systems:

1) a coordinate system &v whose (-axis is vertical and whose y-axis
is aimed at the target. This coordinate system is at rest relative to the
Earth;

2) a coordinate system zyz fixed to the rocket body. The g-axis of this
system is the axis of symmetry of the rocket, the z-axis is parallel to the
z"”-axis of the outer gimbal ring of the gyrohorizon, and the y-axis is par-
allel to the axis y of the outer gimbal ring of the gyro-verticant;

3) a coordinate system zy¥ fixed to the outer gimbal ring of the gyro-
verticant. The y’z' plane of this coordinate system contains the outer gim-
bal-ring pivot axis ¥ and the axis {, of the gyro-verticant housing, which
coincides with the #-axis:

4) a coordinate system g n(, fixed to the gyro-verticant housing, the
§,-axis being identical with the rotor axis of the gyro, the {;-axis being, as
just mentioned, the axis of tilting of the gyro housing relative to the outer
gimbal ring;

5) a coordinate system z"y"s” fixed to the outer gimbal ring of the gyro-
horizon. The z”-axis of this coordinate system is the pivot axis of the outer
gimbal ring of the gyrohorizon and is parallel to the z-axis of the coordi-
nate system zys fixed to the rocket body; the y"-axis coincides withthe 74~
axis;

6) a coordinate system §m{, fixed to the gyrohorizon housing. The
axis of the gyrohorizon rotor coincides with the n,~axis; the housing can
be tilted relative to the outer gimbal ring about the {;-axis.

The corresponding axes of all these systems either coincide or are
parallel while the rocket is on the launching pad.

The following angles, related to the gimbal systems of the gyros, are
recorded during flight:

1) the angle ¢ between the 3- and #-axes (or, which is the same, be-
tween the axes z and ). The angle ¢ is the angle of tilting about the y-axis

(i.e., about the y-axis) of the rocket body relative
to the outer gimbal ring of the gyro-verticant

& " (Figures 35 and 37);
/ 2) the angle 0 between the axes y’ and y, (or,
which is the same, between the axes £’and §), i.e.,
ly the angle of tilting about the {;-axis of the outer

gimbal ring of the gyro-verticant relative to the
gyro housing (Figures 35 and 38);
/ ’7?\' 3) the angle § between the axes g and 8’ (or
- between the axes y and y), i.e., the angle of tilt-
\< ing about the z"-axis of the rocket body relative to
FIGURE 36 the outer gimbal ring of the gyrohorizon (Figures
35 and 40).

The rocket is guided so as to make the angles ¢
and 0 zero and the angle ¢ vary as a given function of time, corresponding
to the so-called flight program. .

Our problem can be stated as follows: let the angles ¢ and 9 recorded
by the gyro-verticant, and ¢ recorded by the gyrohorizon, be known.
Calculate the angle 3 giving the deviation from the n-direction of the pro-
jection of the rocket axis z on the horizontal plane &7 (Figure 36).
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Consider unit length r of the rocket axis 3 (Figure 36); its projections
on the axes of the coordinate system gy{ are respectively

re=coszt=cos sin3,
r‘=ooszq=cos'roos$. (158)

re=cosX=siny,

where 7 is the angle between the rocket axis and the &y horizontal plane.
It is obvious (Figure 36) that

tg&:%—-_—:—-——. (159)

It follows that to determine the angle 3 we must know the direction cosines
of the rocket axis z relative to the fixed axes § and 7 in terms of the angles
%9, and ¢.

To do this we find the direction cosines of the system zyz relative to the
system g€ in two different ways: first, through the angles related to the
gyro-verticant (the angles ¢ and 0 in particular), and then through the angles
related to the gyrohorizon (the angle ¢ in particular), and compare the re-
sults.

The direction cosines of the system z¥7 relative to the system zyz
(Figure 37) are

z y 3
4 cos ¢ 0 sing
vV 0 1 0 (160)
4 —sing 0 cos ¢

For ¢ > 0, the system zyz (fixedtothe rocket body) is rotated counterclock-
wise about the y-axis (parallel to the y-axis relative to the system z'y'?

2L, §4,2°

y'ly
L[}

FIGURE 37 FIGURE 38

(fixed to the outer gimbal ring of the gyro-verticant) if viewed from the
positive direction of the y-axis.

The direction cosines of the system §n,(, relative to the system z'y'7
(Figure 38) are

7 v ¢
§, cos® —sinb 0
7 sind cos® 0 (161)
G 0 0 1
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For 0 > 0, the system zy's (fixed tothe outer gimbal ring of the gyro-verti-
cant) is rotated counterclockwise about the {;-axis (which coincides with the
#-axis) relative to the system E,,(, (fixed to the gyro-verticant housing)
if viewed from the positive direction of the {,-axis.

The direction cosines of the system g3, relative to the system zyz can
now be found from (160) and (161) by using the methods of Chapter I, § 1:

z v 3
§, cospcosd —sind sin ¢ cos®
1, cospsind cos sin psin d (162)
G —sing 0 cosy

Finally, the direction cosines of the system §u,(, (fixed to the gyro-
verticant housing) relative to the fixed coordinate system gq{ are deter-
mined (Figure 39). We denote by ¢* the angle between the axes % and 7,
(or, which is the same, between the axes {and ().

¢

2"%,
£

§,.2!

' ”'
¢ {4

E'Ec " K £ y

FIGURE 39 FIGURE 40

Assume that for ¢*>0 the system §qf,, fixed to the gyro-verticant hous-
ing, is rotated clockwise about the gyro-verticant rotor axis relative to its
initial position when the rocket is on the launching pad. The angle ¢* cannot
be indicated by the gyro-verticant, and must be considered as unknown. The
required direction cosines are:

3 L] ¢
& 1 0 0
T 0 cos§* —sin¢* (163)

G 0 sin¢*  cos¢*

The gyro-verticant rotor axis §, remains, as already mentioned, paral-
lel to the horizontal axis § throughout the rocket flight, since it is assumed
that there are no instrument errors in the gyros and that the Earth's rotation
is negligible.

The direction cosines of the system zysz relative to the system gy are
found from (162) and (163):

¢ " ¢
z cospcos® cospsinBcos¢®* —singsing® — cosepsinbsin¢* —sin¢cos¢*
y —sind cosOcos¢* —cos Osin ¢* (164)
z sinpcosd singsinlcos¢®--cospsing® —sinesinbsin¢* 4 cosgcos¢®
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The direction cosines are given here as functions of the angles ¢, 8, and
¢* related only to the gyro-verticant. It remains now to determine these
same direction cosines as functions of the angles ¢, 8, and ¢* (cf. below)
related to the gyrohorizon only.

The direction cosines of the coordinate system z"y'z" (fixed to the outer
gimbal ring of the gyrohorizon) relative to the system zyz (fixed to the
rocket body) (Figure 40) are:

z y 3
7 0 0
v 0 cos ¢ sin ¢ (165)

¥ 0 —sin$g cos¢

For $>0, the coordinate system zyz is rotated clockwise about the z"-
axis (the pivot axis of the gyrohorizon's outer gimbal ring, parallel to
the z-axis) relative to the system 27)'#’, if viewed from the positive direc-
tion of the z”-axis.

The direction cosines of the system Eymls (fixed to the gyrohorizonhousing)
relative to the system 2"y'#" (fixed to the outer gimbal ring of the gyro-
horizon) (Figure 41) are:

z 4 ' 4
E, cos® —sind 0
B sind cosd 0 (166)
G 0 0 1

The coordinate system 2"y'#" is rotated counterclockwise through an
angle 8 about the gyro housing axis {; relative to the coordinate system
tnl,. The angle & is usually not indicated and must therefore be consid-
ered as unknown.

&
L2"
&iz” Z
'
{ ]
y* E\qﬂvh
"'l i
2 e fc
E; v
t"l: s’
FIGURE 41 FIGURE 42

The direction cosines of the system g3, relative to the system zys can
now be determined from (165) and (166):

z y z
., cos® —cos¢sin® —sin¢sind
7, 8ind cosycosd sin¢§ cos d (167)
G 0 —sin¢ cos ¢
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We finally determine the direction cosines of the coordinate system §&mn,(,,
fixed to the gyrohorizon housing, relative to the fixed coordinate system
g7t (Figure 42). According to our assumptions, the axis of rotation of the
gyrohorizon rotor 7, maintains its direction in space throughout the flight,
and is therefore always parallel to the fixed horizontal axis 4 We denote
by p*the angle between the axes { and {, (or, which is the same, between
the axes § and §), and consider it as positive if the coordinate system Egn,l,
is rotated counterclockwise relative to the coordinate system gy{ if viewed
from the positive direction of the 7m,-axis. The angle ¢* cannotbe indicated,
and must therefore be considered as unknown,

The required direction cosines are therefore:

3 ] 4
§, cose* O —sing®
Ny 0 1 0 (168)
¢ sing* O cosp*

The direction cosines of the system zyz relative to the system §xf are
obtained from (167) and (168) as functions of the angles ¢, 8, and ¢*, re-
lated to the gyrohorizon only:

3 n ¢
z cos 8 cos p* sind —cos 3 sin ¢*
y —cos¢sindcose®*—  cospcosd  cos¢sindsine* —
—sin ¢ sin 9* —sin¢cosp* (169)

z —sin¢sindcose*4+ sinycosd sin¢sindsine® 4
~+- cos ¢ sin ¢* ~ cos § cos ¢*
The angle 3 (the angle of deviation from the axis 4, aimed at the target,

of the projection of the rocket axis z on the horizontal plane) is found most simply
from (159), taking the value of coszt from (164)and that of coszy from (169):

coszf _ sinpcos® (170)
coszn ~ singcos® °

tgd=

To obtain the angle & as function of the angles ¢, 6, and ¢, we equate
the values given in (164) and (169) for the direction cosines of the §-axis
relative to the coordinate system zyz. This yields the following three
equations:

coszt= cospcosb= cosdcose*,
cosyt=——sinb =—cos ¢ sin & cos ¢* — sin ¢ sin ¢*, (171)
coszt = sin ¢ cos 6 =—sin ¢ sin § cos ¢* - cos ¢ sin ¢*,

each of which follows from the other two.
Multiplying the second equation of (171) by —ces¢, the third by —sin¢,
and adding, we obtain

co3 ¢ sin 0 — sin ¢ sin ¢ cos § =sin 8 cos p*. (172)
Dividing this equation by the first of equations (171) yields:
tg&--—*tgﬂ—tg?simp. (173)

which determines the angle # as a function of the angles ¢, 8, and ¢ indicated
by the gyroscopic instruments of the rocket.
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We also have

! = 1+tg'0=]/1+(%14tg0—tgpsinqa)’. (174)

cos &

Inserting this into (170) yields:

0 si . 2
tga=ﬂs$1ﬁ+(g%tge_tg?sm¢), (175)

which is simplified to the following final formula for the angle &:

th:%% Vcos? ¢ cos? 0 - (sin ¢ sin § cos § — sin 6 cos §)*. (176)

From this formula we find that 8=; for the limiting case ¢=0 and

¢50. In fact, for ¢ =0 (Figure 35), the rocket axis 2 is parallel to the
# -axis which coincides with the axis of rotation of the gyrohorizon hous-
ing {,, which in its turn is perpendicular to the rotor axis,, and therefore
also to the fixed axis 4. It follows that for qa=0the rocket axis 2z, and its
projection on the horizontal plane §y, are perpendicular to the axis 7

aimed at the target, i.e., 8=—;—.
For q;=-§ (176) becomes
tg3=1tg ¢ cos . (177
This simple formula can also be derived directly.
Taking §=0 in (177), we find that 3==¢. It is easily seen that in this
case the rocket axis z lies in the horizontal plane. In fact, for §=0 the
y(¥)-axis lies in the vertical plane, perpendicular to the t,-axis (Figure 38);

on the other hand, for ¢=% the y-axis lies in another vertical plane, per-

pendicular to the n,(y")-axis. The y-axis is therefore parallel to the verti-
cal axis {, and the z-axis is parallel to the horizontal plane .

§ 3. Some general considerations on methods for
solving problems on the geometry of
stabilization systems

It is evident that the determination of the direction cosines between dif-
ferent reference frames is of much importance. Every problem was usually
reduced to a comparison of the direction cosines of two given reference
frames obtained in two different ways. It is therefore important to simplify
this process as far as possible in order to avoid lengthy and repetitive oper -
ations which may introduce errors.

The two specified reference frames usually represent the initial and final
positions of a trihedron, which performs finite rotations about one or an-
other of its axes (edges) in a specified order.

It is easily seen that if this trihedron performs successively three finite
rotations, one about each of its axes, then only two essentially different
sequences of such rotations are possible. The problem therefore reduces
to obtaining once and for all two essentially different tables of the cosines
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" of the angles between the trihedron axes in their initial and their final posi-

tions.
We denote the axes of the trihedron by @, b, and ¢, the initial positions

of these axes by 2, ¥ and 3z, and their final position by §, 4, and {. Let the
axes @, b, and ¢ form a right-handed coordinate system (Figure 43), We
denote by a the angle of rotation of the trihedron abe about the a-axis, by B
the angle of its rotation about the b-axis, and by 7 the angle of its rotation
about the c-axis. These angles are positive when the rotation is counter-
clockwise. The displacement of the trihedron abc from position zyz to
position gy{ by successive rotations, namely, through an angle a about the
a-axis, an angle B about the b-axis, and an angle 7 about the c-axis is called
a right-hand displacement or a displacement of the first

kind.
{0]
¢ ¢
y(’) Y '
1 B
- 4
¢ =(a)

FIGURE 43

The displacement of the trihedron aebe from position zyz to position Exf
by successive rotations, namely, through an angle B about the b-axis, an
angle & about the g-axis, and an angle y about the ¢-axis is called a left-
hand displacement or a displacement of the second kind.

It is easily seen that any other displacement of the trihedron composed
of three finite rotations, one about each of its axes, can be reduced to one
of the two displacements described above, provided the trihedron axes are
suitably denoted by a, b, and ¢, and the angles of its rotations about these
axes by a, B, and Y.

Let the trihedron uvw, whose axes form a right-handed coordinate sys-
tem, undergo a displacement from the initial position u%%"® to the final
position u*v*w*® by means of a rotation through an angle = about the w-axis
followed by a rotation through an angle ¢ about the v-axis, and finally by a
rotation through an angle 8 about the z-axis. We denote the v-axis by e,
the w-axis by b, the u-axis by ¢, and the angles as follows:

e=—a, x==f, §=1.

It is seen that the trihedron abc is right-handed (i.e., the axesa, b, and ¢
form a right-handed coordinate system), and that the sequence of rotations
is about the axes b, a, ¢. This example thus corresponds to a rotation of
the second kind.

The displacement of a rigid body determined by the classical Euler
angles ¢, 8, and ¢ (Figure 44) does not belong to the class of displacements
considered here, since it consists of a rotation of the trihedron abe through
an angle ¢ about the axis ¢(s), followed by a rotation through an angle @
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about the axis a(#), and then again through an angle ¢ about the axis c(2).
This is also the reason for the inconvenience of using the classical Euler
angles in the study of small displacements of a rigid body. Such displace-
ments usually correspond to large angles ¢ and ¢ whose difference is small.

We now obtain the direction cosines of the system zyz relative to the
system &q¢ for right-and left-hand displacements of the trihedron abe.

For displacements of the first kind, the first rotation is through an angle
@ about the axis a(z). This rotation brings the trihedron abc from the posi-
tion zyz into a position z'y# (Figure 45). The direction cosines of the sys-
tem z'y'’? relative to the system zyz are

z y 2
2 1 0 0
y 0 cosa sina (178)
Zz 0 —sina cosa

The next rotation is through an angle B about the axis b(y); it brings the
trihedron abc from the position ¥’z into a position §mg, (Figure 46).

z H
v ¥
RO
FIGURE 44 FIGURE 45

The direction cosines of the system §q,{, relative to the system z'y'7,

are z, V Zl
El cos B 0 —sin B
¢ sin § 0 cosB

The direction cosines of the system &4, relative to the system zyz are
from (178) and (179):

z y 2
13 cos B sin a sin B —cos & sin
T 0 cosa sina (180)
& sin B —sin a cos B cos a cos

The last rotation of the trihedron abe, that is the rotation through the
angle ¢ about the axis ¢({,), corresponds to bringing the trihedron from
position &, into the final position ¢ (Figure 47).

64



The direction cosines of the system &y, relative to the system {1 are:

t n 4
£ cosy —siny O
n  siny cost 0 (181)
G 0 0 1

The direction cosines of the system zyz relative to the system §y{, which
define a displacement of the first kind (consisting of consecutive rotations
of the trihedron abe about the axes @, b, and ¢), can now be obtained from
(180) and (181). These direction cosines constitute a table of the first kind.

It has the form:

¢ n 4
x cos p cos 7 —cosBsiny sin B
y sinasinBcosy-4 —sinasinPsiny4 —sinacosp
+cosasiny +cosacosy (182)
2 —cosasinBcosy+4 cosasinPsiny-4 cos @ cos B
+ sinesiny +sinacos 1

We now determine the same direction cosines for a displacement of the
second kind. In this case the first rotation of the trihedron abe is about
the axis b(y) through an angle B (Figure 48). As a result the trihedron abe

. iR
)
), 9 7
')P/y U7 %
A ¢
E, 2
FIGURE 46 FIGURE 47

is brought from the initial position zyz into a position #'y"2’. The direction
cosines of the system #¥'# relative to the system zyz are:

z y 3
2 cosp O —sinP
vy 0 1 Y (183)

7 sinp O cos B
The next rotation of the trihedron abe is through an angle a about the

axis a(2”) This brings the trihedron from the position z"y'z" into a position
Egngls (Figure 49), The direction cosines of the system 8, relative to the
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system 2'y"? are

z v 4
1 3 1 0 0
T 0 cosa sina (184)
& 0 -—sinc cos &

The direction cosines of the system g, relative to the system zys can
now be found from (183) and (184):

z [ 3
& cos B 0 —sinf
7y sinasinp cosa sinacosp (185)

¢ cosasinp —sina cosacosP

The last rotation through an angle 1about the axis ¢ () brings the tri-
hedron abc from position §3{, into the final position &€ (Figure 50). The

o~ £, %
L]
7~ % 4
Sym,y” L T
z &
" “KI"(C),‘} Eg
FIGURE 48 FIGURE 49 FIGURE 50

corresponding direction cosines are similar to those in (181), i.e.,

£ n 4
¢ cosy —siny O
Ns siny cos 1 0 (186)
G 0 0 1

The direction cosines of the system zys relative to the system gy can
now be found from (185) and (186):

£ n C
z cos Bcos 1 + —cosPsiny-}  sinBcosa
+sinPsinasiny -} sinPsinacosy
y cos asin Y cos @ cos ¥ —sina (187)

2 —sinBcosy4 sin Bsin 74 cosBcosa
~+cosBsinasiny -cosPsinacosy

This will be called a table of the second kind. It defines a left-handed
displacement of the trihedron abec from the position zyz to the position §r{
by means of consecutive rotations about the axes b, a, and c.

In view of the properties of finite rotations, the position of the coordinate
system g€ defined by (182) does not coincide with the position of the co-
ordinate system §y{ defined by (187) for equal anglesa, B, and 1.
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As an example, we shall now derive Table (125) of Chapter II, §1, which
gives the direction ccsines of the system zy,z, fixed to the base relative to
the system §y{ whose orientation is determined by the moving object,

It is easily seen that if the initial position of the trihedron abc coincides
with the coordinate system z,y,z;,, then, according to Figures 26 and 27, this
trihedron is brought into position §y{ by the following consecutive rotations:

1) through an angle f=— §,about the axis b(y,);

2) through an angle a==¢, about the axis a(t,);

3) through an angle 1 (—(7+3) in the notation of Chapter II, § 1) about
the axis ¢ (§,).

This is a displacement of the second kind, and (187) is applicable.

Replacing in this table z,y, and z by #,, y,, and 2, respectively, and
@, B, and 1 by ¢;, —3¥, and —(y}-3) respectively leads to (125).

Tables (164) and (169), derived in Chapter II, § 2, can be similarly
obtained. The first by using the table of the first kind (Table (182)), the
second by using the table of the second kind (Table (187)). In both cases
the notation of the axes fixed to the rocket body must be changed.

The auxiliary tables (180) and (185) can also be used if the displace-
ment of the trihedron is limited to two finite rotations about any two of its
axes. This was the case (see Chapter I, §1) of the tilting of the gimbal
rings of two systems the pivot axes of whose outer rings are mutually per-
pendicular. Table (3) is identical (except for the notation used) with (185),
and Table (6) with (180).

§ 4. Nonholonomic motions of
gyroscopic systems

The motions of gyroscopic systems, treated in the precession theory of
gyroscopes, can in many cases be considered to occur as if under the influ-
ence of nonholonomic constraints.

The simplest example is the motion of a double-gyro frame (Figure 51) in
the absence of friction in the bearings of the gyro housings. In this case,
the projection of the frame's own angular velocity w on the frame pivot
axis (z-axis) is zero, irrespective of the motion of the base (ship deck,
plane, etc.) on which the frame bearings are mounted (cf. Chapter IV, § 5):

, =0. (188)

Another example is the gyro acted upon by correction forces. A moment
maintaining the top axis in a position perpendicular to the outer-ring plane
¥’z is applied to the z-axis by means of a motor M (Figure 52). When these
moments are sufficiently large, the top axis is practically perpendicular
even when the base is in motion. In the absence of friction in the bearings
of the gyro housing, (188) is valid here also, ebeing now the angular veloc-
ity of the outer gimbal ring.

The precession theory of gyroscopes neglects the so-called inertial terms
in the equations of motion of gyroscopic systems (cf. Chapter IV, §1),
These terms contain the equatorial moments of inertia of the tops, and also
the moments of inertia of the gimbal rings, housings, and other parts of the
gyroscopic system connected with them. The inertial terms are responsible
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for the so-called nutational oscillations of a gyroscopic system, which
have relatively high frequencies. These oscillations are usually damped
rapidly due to the presence of external and internal resistance forces in
the system. These last are also often neglected in the equations of motion.

Neglecting inertial terms, the equations of a gyroscopic system contain
only the coordinates of the system and their time derivatives. They have,
therefore, the same form as the equations of nonholonomic constraints,
depending in the general case on time (nonrheonomic equations).

|

FIGURE 51 FIGURE 52

The motion of a gyroscopic system described by the equations of the
(elementary) precession theory of gyroscopes, i.e., without taking into
account the inertial terms, is thus in a certain sense a nonholonomic
motion whose number of constraints is equal to the number of coordinates.

This approach is useful in many cases arising during the study of cer-
tain peculiarities in the behavior of gyroscopic systems mounted on mov-
ing bases. In the above example of a gyroscopic frame the equations of
the precession theory can be separated into two independent equations. The
first of them — equation (188) — has the classical form of the equation of
a nonholonomic constraint. The second equation (cf. Chapter IV, §5) de-
fines the law of the rotations of the housings relative to the frame under
the action of external forces. This equation does not have so clear a form
of a nonholonomic constraint. When the friction in the bearings of the
housings is taken into account, however, this method is sometimes very
advantageous.

The motion of the gyro-system base is responsible for the appearance
in the equations of terms depending explicitly on time. Any motion of the
base thus entails a variation in the orientation of the gyros of the system.
If the base returns to its initial position in the course of its motion, the
gyros and gimbal rings will not necessarily return to their initial positions
(because of the nonholonomic pattern of the motion). This problem is of
great practical importance and will be discussed below.

The gyroscopic frame, and the gyro acted upon by correction forces,
can, because of (188), be used for the stabilization of a fixed direction in
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" the horizontal plane, i.e., serve as gyroazimuth (directional gyro). If the
frame pivot axis is fixed in a vertical direction, the frame will have an
apparent rotation relative to the surface of the Earth. The angular velocity
of this rotation is equal and opposite to the vertical component of the angular
velocity of the Earth,

In fact, if the angle between the top axis and the north-south line is de-
noted by x (Figure 53), the projection of the absolute angular velocity of
the gyroscopic frame on the local vertical is equal to

0,=—3% | Using, (189)

where U is the angular velocity of the Earth, and ¢, the local latitude.
Inserting (188) into (189) yields

& =Usiny. (190)

If viewed from above, the frame will rotate clockwise in the northern
hemisphere.

This rotation can be prevented by applying a suitable moment to the
axis of one of the frame's gyro housings. For instance, one resulting
from the static unbalance of the gyros, in order to
cause a counterclockwise precession of the frame
about its pivot axis. Expressed technically the frame
is stabilized in azimuth.

The situation is different if the frame's pivot axis
deviates from its vertical direction because of the
motion of the base on which the frame bearings are
mounted.

If the pivot axis returns to its initial position as a
result of the motion of the base, the frame's orienta-
tion at the end of the motion will, in the general case,
differ from its orientation at the beginning; in other
words, the stabilization in azimuth will be lost.

Therefore, a perfect stabilization of the frame pivot

FIGURE 53 axis in the vertical is necessary for an accurate stabi-

lization in azimuth,

Consider an arbitrary motion of the trihedron z%%p9 fixed to the frame
base in such a way that the z’-axis coincides with the z-axis of the gyro-
scopic frame (Figure 54),

The translatory motions of the trihedron z%%? have no influence on what
follows. It can therefore be assumed that the 2z°-axis of the trihedron pas-
ses permanently through some point 0, and that the trihedron apex M moves
on a stationary sphere of radius Rand center 0. The direction of the z*-axis
or, which is the same, the position of the point M on the sphere, can be de-
fined by the angles ¢ and ¢, as the longitude and latitude of a point on the
Earth's sphere. For this, the position of a great circle of the sphere —
the Equator —and of some initial direction Ofin its plane must be fixed re-
lative to a Newtonian reference frame.

The position of the trihedron 2%°%p® in space is fully determined except
for a translation by specifying, in addition to the angles ¢ and ¢, also the
angle aformed by the z’-axis with the tangent to the geographic parallel Mp
of the point at which the trihedron apex Mis located.
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A variation of the angle § corresponds to the rotation of the trihedron
£%°2® about the {-axis perpendicular to the equatorial plane (Figure 54).
This axis forms an angle -;——9 with the s%-axis.

A variation of the angle ¢ corresponds to a rotation of the trihedron
about Mpperpendicular to the #-axis. Finally, o variation of the angle a
corresponds to a rotation of the trihedron about the 2%-axis itself. The
projection of the angular velocity of the trihedron 2%°2* on its 2*-axis is
therefore

ad . da
o,:ai—'sm?+3‘—. (191)
We now fix a trihedron zys to the gyroscopic frame whose z-axis coincides with

the frame pivot axis, and therefore with the 2®-axis. The position of the
trihedron zyz relative to the trihedron 2%%°® can be defined by the angle

FIGURE 54

between the axes z® and z (Figure 55). The relative angular velocity of
the trihedron zys relative to the trihedron z%%° is equal to the time deriv-
ative of the angle x and is directed along the z-axis. It follows that the
projection of the absolute angular velocity of the frame on its z-axis is, in
accordance with the theorems of kinematics,

d d ad . da
m,=d—}+m,o=d—;‘ +‘—?Sln?+z‘7 . (192)
The motion of the gyroscopic frame is such that o,=0 (see (188)). It
follows that
é df . d
%-{—%smq-}-f‘-:O, (193)

whence

dA=—da —d¢sing. (194)
During the motion of the trihedron 2% (i.e., during the variation of
the angles ¢, ¢, and a) the angle y equals

9
=—(a—a)— [ singdy, (195)
% %

where ¢, 9, @gare the values of the angles ¢, 9, and a at the initial position
of the trihedron. The initial value of the angle y is taken as zero.
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The value of the right-hand side of (195) depends on the curve described
on the sphere by the apex M during the motion of the trihedron.

Let the trihedron z%°%° return to its initial position. Equation (195) then
becomes

X=—§sin gdy, (196)

in which the integration is along the closed curve traced on the sphere by
the trihedron apex M.

In the general case integral (196) is not zero. The frame is thus oriented
differently in space at the end of its motion than at the beginning, in spite of
the fact that the z-axis itself has returned to its initial position and that the
projection of the absolute angular velocity of the frame on this axis was
constantly equal to zero.

FIGURE §5 FIGURE 56

Consider in particular the motion of the apex of the trihedron 2%°%® along
the closed curve formed by two arcs of the parallels ABand CD and two arcs
of the meridians BC and DA(Figure 56).

The angle ¢ does not vary during motion along the meridians, and there-
fore dy=0. The angle ¢ does not vary during motion along the parallels,
and therefore

§sin pdd =Isin edd +Isin ¢ d¢=(sinp, —sin o5) ($—¢,), (197)
48 cd

where ¢,and g;are the latitudes of points 4and €, and ¢, and ¢, their longi-
tudes.
In this case, therefore.

X =(sin gy —sin ¢,) ($s — $1)- (198)
In particular, if the trihedron apex traces consecutively three arcs of

great circles forming an octant, then
=

71=0, py=73, h—h=3
and therefore

i.e., the frame is rotated through 90°; this can also be seen directly.
The right-hand side of (198) represents {(as known from the formulas
of elementary geometry) the ratio of the area bounded by ABCD to the
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square of the sphere radius R; in other words, it represents the solid
angle Q subtended by this area. Therefore

1=0. (199)

This formula remains valid for any closed curve on the sphere. Equa-
tion (199) can be proved using Green's formula

P
fpoctonf[(Z—F)ems. oo
Inserting here
P=sing, Q=0, z=9¢, y=y¢, (201)
and taking (196) into account, we obtain
X=—§sing dg;:”«:osqdq»dy. (202)
The expression
R*cospdidy (203)

represents a surface element of the sphere bounded by two infinitely close
parallels and two infinitely close meridians. Therefore

04
=3, (204)
where S is the part of the sphere's surface bounded by the closed curve.
Equation (204) becomes (199) by the definition of the solid angle.

It is thus seen that the angle of rotation of the gyroscopic frame about
its pivot axis is equal in value to the solid angle described by the pivot axis
in the course of the motion of its base. Therefore the ship's gyroazimuth
axis must be stabilized relative to the vertical, since otherwise the ship's
roll would lead to additional solid angles being described during the motion
by the axis, and therefore to large deviations of the instrument in azimuth*,

A behavior similar to that of the frame is shown by the simple flywheel
mounted on a moving shaft in the absence of bearing friction. The initial
angular velocity of the flywheel (more exactly its projection on the flywheel
axis) must then be zero.

Another case of a nonholonomic constraint in the motion of a rigid body
will now be treated by a somewhat different method. Let the rigid body
move in such a manner that

», =0, (205)

where o, is the projection of the instantaneous angular velocity of the body
on some fixed direction.

Consider two trihedrons: one, §%{, in space, the other, zyz, fixedtothe
body. The relative position of these trihedrons can be determined by means
of the three anglesa, B, and 7 in the same way as was done in § 3 of this
chapter (p. 63) for displacements of the first kind.

Determine the projections of the angular velocity of the trihedron zyz on
the axes §, 4, and {. The vector of angular velocity is equal to the geometric
sum of the angular velocities of the trihedron zyz each one of the angles a, B,
or { being varied separately while the other two are kept constant.

* This result, which has a large number of applications, is closely linked with the theory of the parallel
wansfer of a vector in Riemannian geometry.
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It is easily seen (Figure 47) that an increase of the angle y (the other
angles being kept constant) corresponds to a clockwise rotation* about the
axis {((,) of the trihedron zyz, together with the trihedron §nt, and 2'ys' re-
lative to the trihedron gqf; an increase of the angle B corresponds to a
clockwise rotation of the trihedron zyz, together with the trihedron 2y'7,
about the axis 7(y') (Figure 46); an increase of the angle a corresponds to
a clockwise rotation of the trihedron zyz about the axis z(z) (Figure 45).

[In all cases viewed from the positive directions of the axes of rotation.]

It follows that the angular velocity ;‘: is directed toward the negative
direction of the z-axis, the angular velocities —i—f-and :—;’ toward the negative

directions of the axes mand {respectively. The following expressions are
obtained for the projection of the angular velocity o on the axes §,%, and {
by using the direction cosines given in (181) and (182):

.. da ag . ..
me_—ﬁcosﬁcosy-—ﬁsm'f,

. d|
m'—_—--:—;(—cosﬂsmr)—d—?-cosx; (206)

da . d
w‘=—a—"slnp—’a'%.

The position of the z-axis is determined, in accordance with (182), by
the two angles B and y. The angle adefines the relative position of tri-
hedrons zyz and Z'y’7 (Figure 45), the axes z and & of which coincide.

If the z-axis returns to its initial position in the course of the body's
motion, the angles B and y will likewise assume their initial values. The
angle a will, however, in the general case not assume its initial value if
a nonholonomic constraint, w,==0, is imposed on the body. The position
of the axes y and z will therefore differ from their initial position. In fact,
it follows from the third equation (206) that in this case

d
da=—-?m—7p- (207)

and therefore dy

where the integration is performed along a closed curve in the By plane,
and the initial value of a is taken as zero.
A geometric interpretation can be given to (208), as was done for (196).
Based on similar considerations, the time integral of the projection of
the ship's angular velocity on the vertical,

1
q;:.-.[ m‘dl, (209)
0

is not the angle of yaw of the ship. In fact, the angle ¢ may differ from
zero in spite of the fact that the ship has after acertaintime ¢, returnedto
its initial course, so that the actual variation of the angle of yaw 7 is zero.

* In Chapter 11, §3 the rrihedron 2ys was considered as fixed; as a result, an increase of any of the 7,a, or B
corresponded to a counterclockwise rotation about the corresponding axis. In this section the trihedron §nf
is fixed, and therefore inc:eases of these angles correspond to clockwise rotations in Figures 45, 46, and 47.
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It is seen from the third equation of (206) that
" d d
?=I (—ﬁsinp—%)dt=—§sinﬁda; (210)
°

i.e., ¢=&0 in the general case.

74



Chapter III

PHENOMENA CONNECTED WITH THE ELASTICITY
OF GYRO-SYSTEM ELEMENTS

§ 1. Elastic deformations of the gyro rotor under
the influence of centrifugal forces

The accuracy of gyroscopic instruments such as the directional gyro
depends to a considerable extent on the accurate location of the rotor's
center of gravity relative to the geometric center of the gimbal system.

A shift of the order of one g in the position of the center of gravity causes,
as a rule, a deviation of the gyro of the same order as the specified toler-
ance of the instrument's accuracy.

Take, for instance, a rotor of weight P=1200g and angular momentum
H=15,000 gcm sec; the angular velocity of precession of the directional
gyro (Figure 57) caused by a displacement a==1 p of the center of gravity
will then be

ge—Fe_ 120 000 —0.000008 sec-,

which is equivalent to 1.65 minutes of an arc per minute of time.

On the other hand, as will be shown below, the elastic deformations of a
conventional rotor under the action of centrifugal forces cause a displace-
ment of the center of gravity of the order of one hundredth of a millimeter.

| o

Du—

FIGURE 57 FIGURE 58

This can lead to unacceptable errors in the indications of the gyroscopic
instruments during the variation of the rotational speed of the rotor (this
variation occurs in many gyroscopic designs).
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The rotor of most gyros can be represented schematically by a rela-
tively thin-walled cup revolving about its axis (Figure 58). The cylindrical
part of the cup tends to expand under the action of the centrifugal forces.
This expansion is prevented by the rotor bottom: the cylindrical part bends,
the bottom bulges inward, and, as a result the center of gravity of the rotor
is displaced along its axis (Figure 59).

The centrifugal forces acting on the rotor are considerable: the centri-
fugal force acting on a mass of 1 g situated on the rotor rim at a distance
of 45mm from the axis of rotation equals 41.3 kg at 30,000 rpm,

The elastic deformations of the cylindrical part of the cup will be de-
termined approximately by the formulas of the axially-symmetrical bend-
ing of a cylindrical shell, and those of its bottom by the formulas of bend-
ing of a plate or disk of constant thickness, neglecting the influence on
bending of the tensile stresses in the median plane of the disk.

FIGURE 59 FIGURE 60

Let Rbe the mean radius of the cylindrical shell. Were it not restrained
at the bottom, this radius would increase under the action of the centrifugal
forces by the magnitudex*

w2R3
133 . (211)

The influence on the rotor of the pressure of the squirrel cage, also sub-
jected to deformation by the centrifugal forces, is neglected. If necessary,
it can be allowed for by adjusting the value of 7in (211),

On the other hand, as follows from the formulas of the applied theory
of elasticity, the radius Rof a disk of constant thickness increases at the
same angular velocity o by the smaller magnitude

¥ = {1 —v) qw2R3
="—E °
In formulas (211) and (212) we have used the following notation:
7. specific weight of the material of the rotor;
g. gravitational acceleration;
E, modulus of elasticity;
v, Poisson's ratio.

3=

(212)

* Timoshenko, S, P, Soprotivlenie materialov (Strength of Materials). Vol. II. — GITTL, Moskva-
Leningrad. 1946; Teoriya uprugosti (Theory of Elasticity). —GTTI, Moskva-Leningrad. 1934,
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Since (see Figure 60)
>, (213)

the right-hand edge of the shell undergoes, because of the rigid connection
between the cylindrical shell and the bottom, an additional deflection w,
toward the axis of symmetry; at the same time, the disk radius increases
by the additional magnitude

p=8—¥ —uw,. (214)
At the disk edge there appear distributed tensile stresses of intensity
EN u
O=1— T (215)

where & is the thickness of the disk (the cup bottom).

The right-hand edge of the shell also undergoes an angular displacement
6, The rigid connection between disk and shell cause an equal angular dis-
placement of the disk edge. As a result, there appears a distributed bend-
ing moment at the edge of the disk, given by*

M’=ﬁ,;)—00.. (216)
here
v E&3

=gy =

The deflection of the disk
RS,
f= T‘ . (217)

since the median surface of the disk bends along the surface of a sphere.
The magnitude fis the displacement of the gyro rotor's center of gravity.

The additional deflection w of the cylindrical shell satisfies the follow-
ing differential equation of the type of the equation of an elastically sup-
ported beam:

déw Eh
Dﬁ+ﬁw=o’ (218)
where
3
D— EN

1Z(1—)°

The bending moment and the shearing force become zero at the left
edge of the shell, so that for z=0,

a d3w
27"&:0, o =0 (219)

The integral of (218) satisfying the boundary conditions (219) is:

w=Achzcosz+B%(chzsinz+shzcosz), (220)
where
VATIES W

A (221)

z=fz; B=

A and Bare constants which have to be determined.
The bending moment M and the shearing forces Q at the right end of the

* Timoshenko, S.P. Plastinki i obolochki (Theory of Plates and Shells). — Moskva-Leningrad, Gostekhizdat,
1948,
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cylindrical shell can be obtained from

M=—D%%, Q=—pD 3T (222)
where
z=8l,

and lis the length of the cylindrical shell.
By Newton's law of action and reaction, the values of M and Q are re-

spectively equal to the corresponding values of M'and @, for the disk. The
following two equations with two unknowns A and Bare obtained by equating
(215) and (216) to equations (222) and then inserting (214) and (220)

—B?D [—A 2 sh Bl sin Bl — B (ch pl sin pl — sh Bl cos )=
=@ P'g1_ 4 (ch L sin Bl — sh Bl cos Bl) + B ch pl cospil, (223)
—p*D[—A 2 (ch Bl sin Bl + sh Bl cos pl) — B2 sh Bl sin pl] =
=gy P~ Y —Achplcospl —
— B % (ch Bt sin I+ sh Bl cos B | (224)

Since
d .
8= — d_':| = B[ A (chpl sin Bl—sh B! cospl)—Bch Bl cos Bl], (225)

the displacement of the center of gravity of the rotor can now be found

from (217).
Numerical example. Let

R=4.5cm, h=1.2cm, ¥=0.4 cm, ¥=0.0078 kg/cm?®, I=3 cm,

©=3000 sec-!, v=0.3, E= 2100000 kg/cm?.
It then follows that

a=7";;"’=0.00311cm; a'=“—2___;“’_£’=0.000544cm;

3(1—
p=Y Yt =0553cm1; pl=1.660;

ERs
D=m=332000 kecm;

ERW® 1
D' =y =12300 kgem; 2 = 3550 kg;

Ty = 267000 kgem:?.

Equations (223) and (224) become
—0.306 - 332 000 (—5.044 — 2.93B) =
=3550- 0.553 (—2.934 — 0.243B),

—0.1691 - 332 000 (—4.97A4 —5.04B) =
=267 000(0.00257 - 0.2434 — 1.243B).
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Their solution yields
A=-—0.000802; B=10.001396.
Inserting these values in (225) and the result in (217), gives
6,=0.001488, f= 7 R8=0.00335cm =< 33 p.

§ 2. Deformation of the gyro housing

In complex gyroscopic instruments such as the gyroazimuthhorizon, the
gimbals and mechanisms are usually mounted on the walls and bottom of
the housing. The housing must therefore be sufficiently rigid to avoid seiz-
ing due to misalignment.

The danger of misalignment is particularly severe when the housing is
mounted on the ship's deck by means of four bolts (Figure 61). A gap of
width 8 is formed between one foot and the deck because of unavoidable er-
rors in the manufacture of the housing base; this gap is frequently closed
by strongly tightening the corresponding bolt and the bolt diagonally op-
posite; as a result the housing becomes distorted (Figure 62).

Ay
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®
FIGURE 61 FIGURE 62

To find the deformation of the housing and the permissible width of this
gap, a model of the housing consisting of four walls and a bottom of constant
thickness, similar to a box without lid, will be used. This three-dimen-
sional structure is subjected to the action of four concentrated forces Pact-
ing parallel to the housing center line on the lower corners (Figure 63).

It is evident that if the tensile stresses in the walls and bottom are neg-
lected, the housing edges AA', BB', CC', DD', AB, BC,CD, and DAcan be as-
sumed to remain straight, the trihedrons with apexes at points 4, B, C,
and Dremaining orthogonal.
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This means that the walls and bottom, which will be considered to be
elastic plates, are subjected to pure torsion, by four equal and parallel
concentrated forces @ applied to the corners of a rectangular plate

(Figure 64).

D]

FIGURE 63

The plate deflection for pure torsion* is

Ty (226)

The deflection w is measured from the plane zy tangent to the plate at its
center,

FIGURE 64 FIGURE 65

* Timoshenko, S, P. Plastinki i obolochki (Theory of Plates and Shells). — Moskva-Leningrad, Gostekhizdat,
1948,
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We introduce a coordinate system ayz with origin at the center of the hous-
ing bottom (Figure €5), 3-axis directed along the housing center line, and
z- and y-axes parallel to the undeformed bottom edges. We denote by a, v,
and w the displacements of the upper corner (point 4’) in the directions of
the axes z, y, and 8 respectively.

From the assumptions on the absence of tensile stresses in the plates
it follows that the displacements of point 4 of the housing bottom will be
respectively

8,=0, v,=0, w,=w, (227)

and those of points Band D
uy=u,=0, v,=v,=0, W= wy=—w. (228)
The following relationships of orthogonality follow from the perpendicu-
larity of AA’'to AB and AD:

(A4'),(AB),+(AA'), (AB),+(A4),(AB),=0,
(A4'),(AD), + (AA"),(AD),+ (AA"),(AD),=0, (229)

or

B:64v:0—2w.c=0,
8-04v-b—2w-c=0, (230)
where a, b, and ¢ are the lengths of the edges AB, AD, and AA’.
Equations (230) yield
2 2
p=-—w, v="yw. (231)
The potential energy of deformation of the plate ABCD forming the hous-
ing bottom is
U°=..;_40w=&‘:'3'!ﬂ"_, (232)

The potential energies of deformation of plates ABA’B' and ADA'D are,
as is easily seen,

16— (3 o)

1 ac

y 10— D(-;-u)2 .

(233)

Inserting the expressions for u and v from (231) yields the following
formula for the total potential energy of the housing:

U=U.+2U,+ZU,=M(1+2%+2%:—§). (234)

It is known from the theory of elasticity that the potential energy of an
elastic system equals half the work done by the external forces along the
displacements of the system, i.e.,

U= 4Po. (235)
The displacement w is obtained by equating (234) and (235):

_ P
V=g —v D,

bc D D\’
(1 +25 5 +2E 73)

(236)
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The forces acting at the housing corners are shown in Figure 66.
The following formulas can be obtained from (226) and (231) and the
conditions of equilibrium of the housing walls and bottom:

x=y=3=-0P,, z_22y; z=2IX;

ab
2—=2'4+2"=P—0Q; Q=—8Ll-aiﬂ w.

(237

Formula (236) could be derived from these equations without using the
theorem of the elastic energy.

FIGURE 66

Numerical example. Consider a cube-shaped housing with edges
500 mm long and duraluminum walls (E= 750,000 kg/cm?, v=0.3) 10 mm
thick. A deflection 3 =2w=1 mm is then caused by a tensile force of 40 kg
acting on the bolt.

§ 3. The rigidity of the gimbal rings

The gimbal rings of gyroscopic systems, such as the gyroazimuthhorizon,
are subjected to considerable loads. At certain instants they carry the en-
tire load due to the rotation of a number of elements linked kinematically
with the stabilized parts of the device, The elastic deformations of the gim-
bal rings may cause erroneous readings of the instruments, or even judder
due to friction (cf. § 4 of this chapter).

This section deals with the elastic deformation of gimbal rings and bows
for different loading schemes.

1. A ring resting freely on two supports and acted upon by two forces
(Figure 67). The deflection f at the points of application of each of the
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forces and the rotation 3 of the section at the support are respectively

f=PR’(°‘z:’5‘ +0(Z(B ,

1 1 (238)
—_ 1
8=0.1427 PR* (5 + z.-).
We denote by B the flexural rigidity of the ring or bow, and by C the tor-
sional rigidity.

2. If the pivots are prevented from deflections in the vertical plane
(Figure 68), =0, and the deflection becomes

f*=PFR (0—'?3“ + °—'°c‘°° . (239)

This case does not occur in practice because of the deformation of the
bearings and the unavoidable clearances.

2
—=c

FIGURE 67 FIGURE 68

3. A ring resting freely on two supports and acted upon by a couple
(Figure 69); an equilibrating torque acts on one of the pivots. The line
connecting the points of application of the forces rotates through the angle

o= PR (252 °'°°3"’), (240)
relative to the pivot axis. The unloaded pivot rotates through the angle
0.7854 0.14
6,= PR (2 - 2188, (241)

relative to the loaded pivot.

4, The case where one force only acts on the ring (Figure 70) can be
obtained from cases 1 and 3. If the section at which the equilibrating torque
is applied is considered as rigidly fixed, the deflection f, at the point of ap-
plication of the force P is

0.4558 0.0822
h=PR(>F> +>—). (242)
The deflection f; of the opposite point is less:
1705 , 0.0114
1= PR (252 +271). (243)

83



The rotation 8 of one pivot relative to the other is

0.3927 , 0.0744
0=PR(>F" + 7). (244)

5. If the ring is twisted by opposing torques applied to the pivots
(Figure 71), the angle of twist ¢ of the ring is

0.7854 , 0.1488
p=mR —-B—+——c—'). (245)

6. The bow is loaded in the center (Figure 72) by a concentrated force
Pand an equilibrating torque acting at one of the pivots. The deflection w

FIGURE 69 FIGURE 70

at the point of application of the force is

w=Pr(2TH | 298 (246)

One of the pivots rotates relative to the other through the angle
_ 1 1
p=0.7854 PR* (5 + ). (247)

Numerical example, Consider a duraluminum bow (E=
= 750,000 kg/cm?, v =0.25) of radius R= 250 mm loaded by a force P=
=10.0 kg according to scheme 6 (Figure 72). The dimensions of the bow
section are given in Figure 73.

In this case*

B—EEANEIW @ N
=750000 - 25.7 =19270000 kgcm?;
C=GZI=¥Y 8=300000 - 31,0=9300000 kgem®.
From (246) we obtain

10=0,0133 cn=0.133 mm,

* Timoshenko, S.P. Soprotivlenie materialov (Strength of Materials).  Part Il. — GITTL, Moskva-
Leningrad., 1946.
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If the bow section has the shape shown in Figure 74, then

B,=19270000 kgem?, €,=GX2*X—cp_

= 300000 - 0.645 = 193500 kgcm?.

From (246),
w,;=0.381cm=3.8 mm.

In this case the deflection is almost 28 times that of the bow in the previ-
ous example.

sgi

FIGURE 71 FIGURE 72

The corresponding values of the angle B are, according to (247):
B=0.000783 (= 3) and B,=0.0257 (== 1°28).

An analysis of formulas (238) —(247) shows that the torsional rigidity
has a considerable influence on the deformation of the rings. Accordingly,
the so-called open (e.g., trough-shaped) profiles should not be used in
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| { w
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FIGURE 173 FIGURE 74

gimbal rings; closed profiles should be used instead. Their sections need
not be round. It appears that single openings in the walls of closed profiles
do not substantially reduce the torsional rigidity, and can therefore be per-
mitted. Unfortunately, the theoretical study of this very important problem
is very difficult, while experimental results are not yet available,
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§ 4. Discontinuous motion of insufficiently
rigid kinematic transmissions

Insufficient rigidity of kinematic chains connecting elements of gyro-
scopic instruments and control systems causes not only inaccurate repeat-
ing of the required magnitudes, but also loss of transmission smoothness.
If, for instance, the gimbal ring rotates relative to the instrument housing
sufficiently slowly and uniformly about its axis the rotor of a tachomachine
linked to the gimbal ring by a relatively long kinematic chain may move
discontinuously.

This phenomenon is known as frictional judder. It results from
the laws of friction in the kinematic transmissions, in particular in the link
having the greatest mass or moment of inertia. In the case considered this
link is the rotor of the tachomachine.

The judder disappears with increasing rotational speed of the gimbal ring
or increased rigidity of the transmission between the ring and the rotor.

Many attempts have been made to explain this phenomenon, each attribut-
ing different influences to the transmission parameters and the frictional
forces.

The theory of judder evolved in 1944 by the author in collaboration with
1. V. Kragel'skii is given below. This theory is based on the existence of a
relationship between the initial frictional force F and the duration fof the
contact between the two bodies, all other conditions being equal (Figure 75).

'3

£

FIGURE 75

This relationship can, on the strength of theoretical considerations, be
represented fairly accurately by the formula

F=F(t)=Fy—(Fo—F)e, (248)

where F is the initial frictional force for an infinitely long duration of
contact between the bodies;
Fo, the frictional force for a very short duration of contact;
a, the coefficient depending on the properties of the two bodies, the
condition of their surfaces, lubrication, etc.
Obviously

\ Fo>F, (249)
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" We assume for the sake of simplicity that the force of dynamic friction
is also equal to F, and does not depend on the velocity with which one body
slides on the other,

FIGURE 76

The following scheme is useful for analyzing the phenomenon of dis-
continuous motion or judder (Figure 76). A body 4, linked to a fixed ob-
ject by means of a spring C of rate K, lies on the rough surface B. When
the surface moves it carries the body with it, pulling on the spring \Qrith

a force
P=Kzx, (250)

where 2 is the displacement of the body from the position at which no force
acts on the spring.

The body 4 will move together with the surface Buntil the force of the
spring Cacting on it becomes equal to the starting-friction force for the
specified duration of contact between the body and the surface. The dis-
placement z, at which the body begins to slide on the surface, when contact
is sufficiently long, is given by

Kzy=F. (251)
This sliding is the result of two forces acting on the body: the contact force
of sliding friction Fgin the direction of motion of the surface, and the elas-
tic force of the spring P, expressed by (250). The subsequent motion of the
body under the action of these two forces will be harmonic about the equi-
librium position z=a (Figure 77), which is determined by the relationship

Ka=F,. (252)

When sliding begins, the body 4 has a displacement z, and a velocity ».
1t will therefore continue to move in the same direction as the surface
initially, gradually losing speed and lagging behind it. Later the velocity
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becomes zero and changes sign; the body starts moving in the opposite
direction with a velocity gradually increasing in absolute value. The ab-
solute value of the velocity attains a maximum at z==ga, at which the frictional

817



force is equal to the elastic force of the spring, and then begins to de-
crease until the velocity again becomes zero and changes sign; the body
starts moving with increasing speed in the direction of motion of the sur-
face. At z==z, the body's velocity becomes equal to that of the surface v.
Since the body's motion is harmonic, the displacements corresponding to
the same value of » are symmetrical about the equilibrium position. There-
fore

Zkn g, (253)

whence
z,—=2a—z, (254)

It is easily seen that the body ceases sliding on the surface B after its
velocity has reached the value », and that its further motion (until sliding
sets in again) is in unison with the surface. In fact, the body cannot over-
take the surface, since this would mean that the frictional force changes
sign and that the force acting on the body in the direction of motion of the
surface is

— Kz, —Fy=—K (2a —2)) — Fy=F—3F,. (255)

This expression is, however, negative if Fu<3F,, so that our assumption
is incorrect.

We denote by ¢, the time during which the body A moves together with
the surface Bafter sliding has ceased, and by z, the displacement of the
body at the instant sliding recommences. The following equation will obvi-
ously be satisfied:

z,—=z,+ vt,. (256)

On the other hand, sliding recommences at the instant the spring force
Kz, is equal to the starting-friction force, whose value is determined by
the time ¢, during which the point Ais in contact with the surface B without
sliding. Therefore:

Kz,=K (2,4 vty) =F (t,), (257)

from which t, and z, can be determined if the function F(t)is known.

FIGURE 78

The renewed motion will similarly be harmonic and will end at the in-
stant the velocity of the body becomes again equal to that of the surface.
The corresponding value of the displacement z; is then

z,=2a—1z, (258)

which is similar to (254).

The body 4 will then again move together with the surface B for a time ¢,
at a velocity » until sliding occurs again at z==rz,. The time ¢, can be found
by solving an equation similar to (257), i.e.,

Kz,= K (z,+ vt) =F (t,)- (259)

This sliding is again followed by a uniform motion, followed by a third
period of sliding etc.
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If the durations ¢, t,, 2, of joint motion of the body 4and the surface B

without relative sliding tend toward the nonzero limit ¢* then the harmonic
motion of the body A (Figure 76) becomes a constant-amplitude periodic
oscillation, usually of the relaxation type (which is quite different from a
harmonic oscillation).

We now invert this scheme, and let the end of spring € move at constant
velocity », while the surface Bremains stationary (Figure 78). The above
analysis remains valid also in this case. After a time ¢{,the body 4 will
start moving with a succession of stops of respective durations &, ¢, ...,
in other words, the motion will be discontinuous.

To find the conditions under which discontinuous motion or judder occurs
during friction, consider the above scheme (Figure 76) and denote by z*the
limit of the sequence of the displacements x,, %, 2, ..., at which sliding
starts (Figure 77). In the limit the difference z* —a represents half the
distance traveled by the body together with the surface without sliding.
Therefore

it
*—a=—, (260)

whence ote
*=at 5. (261)

On the other hand, sliding starts at the instant at which the spring force
becomes equal to the starting-friction force for the duration t® of contact
without sliding between the body and the surface:

Kx* = F(t%). (262)
Inserting (261) yields

K(a +-';'-)=F(t'). (263)

The value t® can be found from this equation.

Figure 79 represents the starting-friction force F(t) as a function of the
duration f of contact without sliding between body and surface. It also shows
the spring force P(t)

P=K(¢ +32'—). (264)

at the end of the time ¢ during which the body 4 remains stationary relative
to the moving surface B.
The two curves have a common point at t=0, since

This will be the only common point if the slope of the curve F= F(t) at
t=0is less than the slope of the straight line (264). There are then no

relaxation oscillations.
If the starting-friction force is given by (248), then

F0)==a(Fu—Fy). (266)
It follows that for no judder the inequality
a(Fo—F) < -, (267)

must be satisfied. This will always be the case if the spring stiffness Kor
the velocity »is sufficiently large.
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If inequality (267) is not satisfied (this may happen with a soft spring),
the curves in Figure 79 have another intersection point at £=¢% In this
case judder is possible. It can be shown that this motion of body A will be
stable. The limiting value of » at which inequality (267) becomes an equal -

ity will be denoted by v,
Consider again the curve F=F(t) of the starting-friction force as a func-
tion of the duration of contact without sliding between the body and the sur-

face (Figure 80).
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Draw on the same figure and to the same scale the curve P=P(f) of the
spring force as a function of duration £ of joint motion without sliding.
This curve will be the straight line

P=Q+Kn, (268)

where @ is the spring force at the beginning of the motion in unison. The

abscissa of the point M at which the curves F=F (t)and P =P(¢) intersect

gives the instant at which sliding starts; its ordinate gives the correspond-

ing value of the displacement z of body 4, multiplied by the spring rate K.
Mark off a point § symmetrical to M about the line

F=F, (269)

parallel to the abscissa; also mark off on the ordinate a point @ having the
same ordinate as point S. It is then easy to see that the ordinate of point @
(or §) represents the value of the spring force at the end of sliding and there-
fore at the start of a new period of joint motion of body and surface. The
spring force will then vary according to the law

P=Q +Kn, (270)

represented in Figure 80 by the line ¢ M’, where M’is the intersection of
the straight line (270) and the curve F=~F(t). The point M’ determines the
beginning of renewed sliding. Knowing its position, the points §’and @
can be found, and plotting can be continued until the sequence M, M', M",...
tends to a limit point M*. The sequence @', @¢*,... in its turn determines
a limit point Q®. The points M*and Q* are located on opposite sides of the
line F=F, at equal distances from it.
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Mark off on the ordinate a point Q, (Figure 80) located at a distance F,
from the abscissa. The equation of the line Q,M*is

P=rF,+ %%, (271)

since the slope of the line Q,M* is half the slope of Q*M*.

By inserting (265) into (271) this last equation becomes identical with
(264). The two lines therefore coincide, and the abscissa¢*of point M*is
determined by solving equation (263).

To study the problem of the stability of the interrupted motion, assume
that at a certain instant the body A is placed on the surface Bto the left of
the position corresponding to the end of steady sliding (Figure 81). This
corresponds to some point @ located on the ordinate below @*. The spring
force will vary according to (268) as a straight line of slope Kv up to the
intersection with the curve F=F(t) at point M. Sliding starts at this instant.
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The ordinate of point M is larger than the ordinate of M* and the dis-
placement of body 4 from the equilibrium position £=a will therefore be
greater at the beginning of sliding than for steady motion.

On the other hand, the ordinate of point M is less than the ordinate of
point N at which the straight lines (268) and (271) intersect.

Point Nis located at the same distance from the line F=F; as point @,
as can be easily seen from the similarity of the figures. It follows that
point §, symmetrical with point Mrelative to the line F=F,, will be nearer
to this line than point . The renewal of joint motion of body and surface
is therefore determined by point @ located between points Q and Q*. It is
seen that the judder amplitude will decrease until a periodic motion is
finally established.

It can be similarly shown that if body A is placed on surface B to the
right of the position corresponding to the end of sliding at steady motion,
the judder amplitude will increase. This case is shown in Figure 82 by
points @Q,, M,, $,, @'}.... etc.

The amplitude of the steady judder is

b=l/(zt__a)!+ _;_y"_ (272)
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since initially the body's velocity is equal to the velocity v of the surface
and the displacement of the body from the equilibrium position is equal to
the difference z* —a.

The difference z* —a decreases with increasing velocity v until it be-
comes zero for y=np,{cf. p. 90). Point M*in Figure 80 approaches point
Qo until both coincide for v=v,, when the interval t*becomes zero.

It is thus seen that to point @, (Figure 80) there corresponds a harmonic
motion of body 4, which slides on the moving surface Bcontinuously (except
at the instants in which the velocities of the body and surface become equal).

The limiting value of the amplitude is

b=0) ¢ - (273)

This harmonic motion is unstable if the curve F=F(t) intersects the
straight line (264) at a point M*; it is stable if this straight line lies above
the curve F=F(t)and does not intersect it. The proof is similar to the
above.

In addition to this harmonic motion, the body 4 can also perform an in-
finite number of other harmonic motions of smaller amplitudes. In particu-
lar it can be in equilibrium when displaced to a distance z=a (Figure 76) to
the right of the position at which no spring force acts. In this case it fol-
lows from (265) that the force of dynamic friction F, and the spring force P,
equalize each other, i.e.,

P,—= Ka. (274)

This equilibrium is stable. This is, however, different if the force of
dynamic friction depends, even slightly, on the relative velocity of sliding.

Let the frictional force have a regressive characteristic, i.e., the fric-
tional force decreases with increasing relative velocity of sliding. In this
case the equilibrium becomes unstable; if air resistance is neglected, then
for the scheme in Figure 76 either quasi-harmonic oscillations or dis-
continuous motion will occur, depending on the spring rate € and on the
velocity of the surface B.

Regressive friction characteristics are comparatively rare. It follows
that the equilibrium at z=a will usually be stable; the resistance of the
surrounding medium to the motion of the body also contributes to this sta- -
bility.

In conclusion, two stationary states are as a rule possible for the scheme
in Figure 76 when inequality (267) obtains: a state of rest, and discontinu-
ous motion. The transition from the state of rest to the state of discontinu-
ous motion can be performed only by giving to body Aa velocity not less than
the velocity » of surface B. The initial joint motion without sliding of body
Aand surface B, leading to the initial sliding, is a particular case of such
an excitation.

The period of the steady motions is the sum of the time during which the
body and surface move in unison and the duration of discontinuous motion:

T=222 o)/ 2 425, (275)
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‘where the value of t is found from the ratio

K 2 —
cos —;==—T_L. (276)

When the velocity vreaches its limiting value v =v,, *=a, and there-

fore
T=2n’/% . (277)

This case therefore corresponds to harmonic oscillations.

For very small values of », on the other hand, the first term on the
right-hand side of (275) is decisive, and the oscillations exhibit a relaxa-
tion pattern.

§ 5. Influence of the rigidity of the gyroscopic-system
elements on the frequency of nutations

The elasticity of the elements of the gyros' gimbals and of the various
transmissions linked with the gyros is usually neglected when determining
the natural frequencies of oscillations of the gyroscopic systems. The
frequency of nutations v of the simplest gyroscopic stabilizer (Figure 83)

FIGURE 83

is thus determined (Chapter IV, § 1) by the formula
H
v== ey (278)
where H is the angular momentum of the gyrostabilizer;
A, the moment of inertia of the gyro rotor together with its casing
and the outer gimbal ring, referred to the stabilization axis z;
J, the moment of inertia of the mass to be stabilized, referred to
the same axis;
B, the moment of inertia of the gyro rotor together with its casing,
referred to the casing axis y.
Formula (278) is derived under the assumption that the rotor axis forms
a small angle with the perpendicular to the zy plane, that all system ele-
ments are perfectly rigid bodies, and that there is no friction in the bearings.
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According to (278) an increase in the angular velocity of the rotor
causes a proportional increase in the frequency of nutations v. In fact

H=Cn, (279)

where C is the moment of inertia of the gyro rotor about its axis of rota-

tion 8. Therefore
Cn

e (260

The agreement between formula (278) and experimental results is in
many cases rather poor. The experimentally determined frequency of
nutations is lower than that given by (280), the discrepancy increasing with
the angular velocity of the rotor. V.I. Kuznetzov found the cause of this
discrepancy in the elasticity of the gyro-system elements.

The influence of the rigidity of the gyroscopic device, shown schemati-
cally in Figure 83, on the natural frequencies of its oscillations is analyzed
below.

In order to simplify the mathematical treatment, it will be assumed that
only the shaft B, connecting the mass to be stabilized with the outer gimbal
ring of the gyro, is elastic. The mass of the shaft itself is neglected. The
equations of motion of the gyroscopic device are in this case:

d?a

A —H P =K(p—a)
a d
BGw+Hg=0 (281)

18t =K@—9)

where the new symbols introduced have the following meaning:
K, rigidity of the shaft B;
@, angle of tilting of the outer gimbal ring about the stabilization axis;
%> angle of tilting of the mass to be stabilized about the same axis;
B. angle of tilting of the gyro casing about its axis.
The determinant of the system of auxiliary equations of (281) is

A H{K —H —K
D) =| H\ Bx 0 (282)
—K 0 4K

The following equation is obtained by expanding the determinant (282) and
equating it to zero:

ABINS - [(A+ 1) BK + H* T\ + H*R\ =0. (283)

This equation has a double root A=0. A linear first integral is

B-:—‘p- -} Ha = const.

Introduce the magnitudes

H? K

: Y. — = — 284
= A+ E and k* T e ( )

which have simple physical meanings: v, as already mentioned, is the

frequency of nutations of the gyroscopic device, shown in Figure 83, with

all its elements including the shaft Bperfectly rigid; kis the frequency of
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the torsional oscillations of the mass to be stabilized, assuming the outer
gimbal ring to be fixed and the shaft Bto be elastic,

The following biquadratic equation is obtained by simplifying (283) and
inserting (284):

A
257 M E )N =0, (285)
From this we obtain the two natural frequencies of oscillation of the gyro-

scopic device,
Using the notation:

¢=A:—l' z=—%;-, E=ki2' (286)
equation (285) becomes
ol — (148 z4-t=0, (287)

in which the unknown Z is a dimensionless magnitude proportional to the
square of the natural frequency of the device. The parameter a is by defini-
tion always less than unity. The value of the parameter § is a function of
the angular velocity of the gyro rotor. The following expression for the
parameter § is obtained from (279), (284), and (286):
JC2n2
(A4+7)BK "’
Consider the case when £ is small relative to unity; this case corres-
ponds to a low angular momentum of the gyro or to a high rigidity of the
shaft. The roots of (287) can in this case be approximated by the following
series expansions:

(288)

E=

2 ==k—(— a) B+ (1— 3o 2a)80..., (289)
=141 fu—apt.... (290)

The first terms of these expansions have a simple physical meaning. In
fact, inserting (284) and (286) in (289) and (290) yields, when all right-hand
terms except the first are neglected:

a2

R (291)

—Mvi=
—na¥_4+NK
317 a Al
These are respectively the square of the nutation frequency of the gyro-
scopic device for a perfectly rigid shaft B, and the square of the frequency
of torsional oscillations of two masses having moments of inertia 4and J,
connected by a shaft of rigidity X (Figure 84).

(292)

u 8 u

7172 P a4

FIGURE 84
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It is thus seen that formula (278) is correct for very small values of §,
but that for small values of § the frequency of nutations increases more
slowly with §than the angular momentum.

Consider now the case of large values of §, corresponding to a very
large angular momentum of the gyroscope or to a low rigidity of the shaft
B. The solution of (287) can in this case be represented as an expansion in

powers of T

n=1—tps 1= (293)
1 {—a {—¢
R (294)

The first terms of these expansions have likewise a simple physical
meaning. In fact, inserting (284) and (286) yields the following approxima-
tions:

o~ kS e K
...l::k‘-—--T, (295)
3 2 H2

Formula (296) gives the frequency of nutations of the gyroscopic device
when the mass to be stabilized is removed, and (295) gives the frequency
of the torsional oscillations of this mass when the outer gimbal ring is
fixed [to the ship].

The higher-order terms of expansions (293) and (294) introduce correc-
tions due to the existence of a dynamic linkage between the mass to be
stabilized and the gyroscope.

Numerical example. Let

A=10gcmsec?; B=7.2gcmsec?; C=5gemsec?;
n=1500 sec™!; J=10gcmsec?; K=19,550,000 gcm.

Then
v’:_(Ai’l)B-=391m sec-?; k’=g—=1955000 sec?;
_ A g P
“"A+J—o-5v 8—”_0.2.

The following roots are obtained by solving (287):
z,=0,180; z,=2.22.

The square of the natural frequencies of the gyroscopic device are
therefore

=K'z, ==352000 sec ?, —A}=k"z,=4340000 sec”?.

The value obtained for the frequency of nutations, taking into account
the elasticity of shaft B, is in this case 5% less than the value obtained
when assuming that all elements of the gyroscopic device are perfectly
rigid.

If the angular velocity mof the gyro rotor is doubled without altering
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) its geometric dimengions, the result is
vt=:1 564000 sec-%; t=03;
2, =0,519; z,=3.08;
—23=:1015000 sec~2, —)\3=6020000 sec-2.
In this case the difference between the two values obtained for the fre-
quency of nutations is 20%, and a correction has to be introduced in (278).

Curves of the roots of equation (287) as function of § have been plotted
in Figure 85 for &=0.5.

t 4
)
[} I,
42
1
’ L
] ] F4 J L] ¢

FIGURE 85

It should be noted that a rigidity K= 19,550,000 gcm is relatively high;
it corresponds to the torsional rigidity of a round steel cylinder 10 mm in
diameter and 40 mm long.

The outer gimbal ring, the gyro casing, and the shaft of the gyro rotor
have rigidities of this order. Formula (278) is therefore incorrect even
for free gyros.

In practice, a correction factor of 0.5—0.7 is introduced into (278),

H
v (0-5 0-7) m . (297)
The natural frequencies of gyroscopic devices, taking into account the
rigidity of the elements, can be similarly obtained. Some of these prob-
lems were discussed earlier by G.D. Blyumin., An exact mathematical
treatment leads to the determination of the natural frequencies of a me-
chanical system having an infinite number of degrees of freedom in the
presence of gyroscopic forces,

The critical velocity of the rotor shaft must likewise be found taking
into account the rigidity and mass of the gimbal elements whose influence
can be considerable,

§ 6. The damping of gyroscopic and other devices mounted
on objects moving at high accelerations

The objects on which the gyroscopic devices are mounted often have

accelerations of the order of hundreds of g (gravitational acceleration);
this is the case when objects dropped from a great height fall into the water.
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In other cases, these objects are subjected to strong vibrations which pro-
duce accelerations of the order of tens of g; this happens when the fuel is
burnt during the flight of a missile. The inertia forces caused by these
accelerations are undesirable, since they not only affect the accuracy of the
gyroscopic instruments, but may also put these out of order.

Large inertia forces can also be caused by careless handling of the in-
struments. Dampers (shock-absorbers) are used to reduce the inertia
forces. However, not only does the damping fail to achieve its aim in may
cases, it may even cause an increase in the inertia forces acting on the
instruments.

The following rule can be stated:

"The use of shock absorbers is justified only if the
distance through which the object containing the instru-
ment to be protected is braked (or accelerated) is not
greater than the damping travel. "

Gyroscopic or other instruments have frequently been improperly secured
through ignorance of this simple rule.

Consider the case of sudden braking of an object having a translatory
motion. Let a(f)* be the deceleration of the object, and mthe mass of the
instrument mounted on the object. Assume that the shock absorber acts in
the direction of the object's motion. Denote by Athe force developed by the
shock-absorber. The equation of motion of the instrument, referred to the
object, is then

m Sy =ma(f)— 4, (298)
where zis the displacement of the instrument from the equilibrium position
at steady motion of the object (Figure 86).

a(t) ]

-

\-

R

FIGURE 86

If the instrument is connected rigidly to the object, 2=0in (298). This
yields
A=A,=ma(t), (299)

where A, is the force with which the object acts on the instrument.
The product ma(f)is thus the inertia force acting on the instrument in
the absence of damping.

* The damping of vibrations is not discussed, being generally known.
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. When a shock absorber is used, a force 4 acts on the instrument. This
force is, according to (298),

42z
A=ma(t)—mg5. (300)
The product ma(t)is positive during the entire period that the object is
braked. It follows that 4 < A4, only if the condition

Z>0 (301)

is satisfied during all this time.
It will be shown below that if the damping travel, i.e., the maximum

possible displacement of the instrument from its equilibrium position, is
much less than the braking distance, then the acceleration % is consider-

ably smaller than a(g) when condition (301) is satisfied; it follows that then
damping does not attain its aim, since A&k ma{g).
The initial conditions of the braked motion are

z(0)=0, ‘%ﬂ.-_-.o. (302)
Therefore
ar ¢
z=j []‘w(t)dt]dt. (303)
e Lo

where ¢, is the duration of braking, and
L&
w{t)=—g7. (304)

If the limit of damping travel is denoted by 8, then

L !
| [jw(:)d:]d:(t. (305)
[]

(4]

Let the braking distance be 8, and let the braking reduce the object's velo-
city by a factor p; denote by an, the maximum value of the braking decelera-~
tion. The following theorem is then true for the conditions stated (including
inequality (305)).

Theorem, For every given braking law s==g(f) there exist in the inter-
val 0t Y, instants ¢ for which w(t) is less than @, if 8 is considerably less
than s,.

Proof. Introduce the mean value wyof the acceleration w(t) during the
interval 0 e, Inequality (305) can then be written

2
vy b (306)
It follows that there are instants for which
]
v <F- (307)
1

The time during which the object traverses the braking distance s==g, will
be a minimum if the motion is initially unbraked, i.e., at the velocity Vg,
the last part of 8 being traversed at the constant deceleration a,,, (Figure 87).
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Then

S3~=8m 1 B —¥ ‘
L2 = + P (308)

where vz—v}

=Y * (309)
is the minimum braking distance when the condition

dis
—7 S (310)
is satisfied. In fact
:‘=)3- (311)

where M is greater than unity. It is also clear that
Dy =¥y, (312)

where pis likewise greater than unity.

v

2
&

-l
[}

FIGURE 87

Inserting (311) and (312) into (309) yields

2 1
IT=b=u (313)
It follows that

v‘-————m. (314)

v.=p————r___(“’_”- (315)

Inserting (311), (314), and (315) into (308) transforms this inequality into

(P ?i;. (316)

R A p—1

(For example, ifAz==p=2, then x=0.715.)

where
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* It follows from (307) and (316) that there exist instants ¢ at which
W(t)<—:7%a.u- (318)
This completes the proof, and also establishes the rule, formulated above
on the cases in which damping of instruments mounted on moving objects
is indicated.

If the acceleration of the instrument relative to the object changes sign,
then A>> ma(t) by (300), and the shock absorber causes an increase of the
force acting on the instrument. This is to be expected if the period of natu-
ral oscillations of the instrument is shorter than the duration of braking the
object. In this case a shock absorber will even be harmful.

Several examples illustrating these considerations will now be given.

1. A spring of rate K= 150 kg/cm is used as shock absorber (Figure 88).
The instrument weight is mg =10 kg. The object has a constant deceleration
a=100 g; the initial velocity of the object is 9= 396 km/hr, and its final
velocity »,=36 km/hr.

s

L)
3

2 .

FIGURE 88

The braking distance and time are in thij‘,,case

2
=0.1 sec, :‘=—°2‘—'i=6 m,

__bYo—n
ty==

The equation of motion of the instrument referred to the object is

diz
m - =—Kz -4 ma,
whence dn +
r=" +Ccos'/ %t-}-Dsinl/%t.
where

k='/-£-=121.3sec'1

is the angular velocity of the oscillations of the instrument relative to the
object, and €and Dare constants which have to be determined.
The initial conditions (302) yield

z(0) =T+ C=0,

dz (0)
dt

z=-"%(i—cosl/§t).
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The maximum displacement of the instrument from the equilibrium
position is
z_“=2—';3—=13.3cm,

and is reached after a time
T ] /=
—z——-ﬁ T—*0.0259 <0-i sec,

that is long before braking of the object ends.
The maximum force developed by the shock absorber is twice the inertia
force

A=ma= mg—';:iomkg,
since in this case

A_“=Kz_,=2ma=2000 kg.

1t follows that the shock absorber has a negative influence on the instru-
ment. In addition, the damping travel 3>13.3 cm would hardly satisfy the
design requirements.

2. A noticeable shock-absorber action exists only at excessively large
displacements of the instrument relative to the object.

Let, for instance, the spring parameters be such that

-;-:—;— '/ —;—>t,-

The following relationships obtain at the instant braking ends:

z(tx)-——'?(i—“"/g")'
-_i%(‘ﬂl ___.c}/’—-i-aln ’/t;‘;‘r

Further motion of the instrument is determined by the differential
equation

m%—=—xz
with initial conditions

z(0)="5 (1 — cosk,),

dz (0 .
-%i—)-=a -;—sm kt,, k="/%—,
The integral corresponding to these initial conditions is
z= EK: [(1 — cos kt,) cos kt -} sin kt, sin kt].

The maximum displacement of the instrument is therefore

z_“="-;{—°-\/(1 —cos kt,) - (sin kt,)t =2 %sin%l .
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. The maximum load on the instrument is therefore determined by the
formula

Ay,=Kz_, =2masin %‘-‘-=24. sin 5} .

Let

S =2sin =01

This shows that the force acting on the instrument is only one tenth of the
force acting when the instrument is rigidly secured to the object.

Inserting ¢§=0.1 sec:

kzx1sec-!, é—:k’:isec‘z.

The corresponding maximum displacement for g= 100 g will be almost
100 m.

These calculations show that it is advisable to use shock absorbers when
the braking duration {is very short. A very stiff spring can be used in this
case causing a comparatively small displacement of the instrument relative

to the object.
Let, for instance,

t;,=0.003sec, 4,,=024, and a=10g.
Then

s.n’fgl_‘i-&_o.i, k=08.7 sec™), zo, = R0==28—lhcm.
3. Due to space limitations stops are frequently fitted which restrict
the deflection of the shock-absorber spring. If the object is sharply braked,
the instrument compresses the spring, moves through its entire free travel,
and strikes the stop. The impact forces arising at this instant are consider-
ably higher than the forces arising when the instrument is rigidly secured.
Such a shock absorber is therefore not recommended.

-
1

FIGURE 89

A shock absorber with restricted travel can be represented as a combina-
tion of two springs compressed by the instrument mass (Figure 89). The
spring €, has a relatively low rate K; the spring C, has a rate Bequaling that
of the stop.

The compressionof spring C, starts after spring C, has undergone a de-
flection 8.

Assume for simplicity that the deceleration @ of the object is constant
and that the duration of braking is longer than the compression time of both
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springs; the instrument's motion relative to the object then takes place-
under the action of the elastic forces of the springs and the constant inertia

force
Q=ma.

Denote by f the maximum deflection of spring Cy. The deflection of
spring C, is then f4-8, and the potential energy accumulated by the two

springs is ' ‘
=fK(8+f)’+78f'.
The following equation expresses the law of conservation of energy:
1 i
LK@+ Br=0U+Y).

The right-hand side of this equation represents the work done by the force
Q along the displacement f+3 The maximum value of the deflection is
therefore

,__O—K'H- Q@+ 2B — KB&
= K+8B .

The maximum value of the force acting on the instrument is

A=K @4N+BF-
Let
K=150kg/cm, 3=5mm, mg=10kg, Q=1000kg, and B=150000kg/cm.

This corresponds to a deformation of the stop amounting to 0.067 mm
under the action of a force of one ton.
W e obtain in this case

§=0.0864cm; A.,=13050kg> 13¢Q.

If the deflection f of spring C, is neglected as being small compared
with the deflection § of spring C;, we obtain

_;_(Kaa.*_nf)g@; f='/ iL-——i";’w=0.0802cm;

Amgm-}-Bj:iZ 100 kg.
The formula for Ay can be simplified still further without great error:
A 22 V2BQE=12240kg.

The physical meaning of the simplifications made in this last formula
is that the influence of the shock-absorber spring is neglected after impact
against the stop, as is the deflection f relative to 3.

In fact, the force needed to compress spring C; by 5mm is 75 kg.

This is considerably less than the inertia force Q@ = 1000 kg.

It is true that an increase of the shock-absorber spring rate reduces
the value of A,,,; this, however, has no great effect, since the force on the
instrument is 2Q= 2000 kg even in the absence of impact against a stop.
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Chapter 1V
LINEAR THEORY OF GYROSCOPIC SYSTEMS
§ 1. The equations of gyroscopic systems

Gyroscopic phenomena obey strictly the laws of classical mechanics.
They provide, together with the motion of celestial bodies, the experi-
mental corroboration of the laws of classical mechanics in a reference
frame having its origin at the center of mass of the universe, with axes
oriented according to the Newtonian frame (the so-called inertial reference
frame).

The equations of motion of the gyros in gyroscopic systems must there-
fore allow for the angular velocity of the Earth and for the additional rota-
tion of the gyroscopic device, together with the object carrying it, on the
curvilinear surface of the Earth.

The forces acting on the gyros are determined by the relative position
and motion of the gyro and the other parts of the gyroscopic device, and by
the motion of the object on which the gyroscopic system is mounted. The
inertia forces arising during the translational motion of the object can affect
the gyro considerably, in particular if there are unbalanced parts in the
gyroscopic device. The influence of the translational motion is in some
cases neutralized by special means (compensation of the accelerations and
velocity deviations), while in other cases it is made use of for the measure-
ment of the angular velocity of the object, integration of its linear accelera-
tion, or other measurements.

Euler's dynamic and kinematic equations, widely used in theoretical me-
chanics in the study of the motion of a rigid body about a fixed point, are
not suitable for the study of the gyro's motion, due to the fact (already men-
tioned in Chapter II, § 3) that the two Euler angles, corresponding to a devi-
ation of the axis of rotation of the rigid body from its initial position, are
in general not small. At the same time, the axes of rotation of the gyro's
rotors of almost all gyroscopic systems deviate only slightly from some
fixed direction in space; in any case, the change in the mean position of the
rotor shaft (precessional motion) proceeds at an incomparably slower rate
than the rapid motion of the shaft about this mean position (nutational mo-
tion). It follows that in order to study the motion pattern it is sufficient to
consider only small deviations of the rotor shaft from its initial position
during a short time interval,

This shortcoming of the classical equations can be overcome either by
using Krylov's system of modified Euler angles* or by using an altogether

* Krylov, A.N, and Yu, A, Krutkov. Obshchaya teoriya giroskopov i nekotorykh tekhnicheskikh ikh
primenenii (General Theory of Gyroscopes and Some Technical Applications). — Izdatel'stvo
Akademiya Nauk SSSR, Leningrad, 1932,
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different system of angles, such as the angles representing a finite rota-
tion of the first kind (see Chapter II, §3).

Let g7, be acoordinate system oriented according to the Newtonian frame,
and zyz a coordinate system characterizing the position which the trihedron
abe attains as a result of successive finite rotations about its edges a, b,
and ¢ through anglesa, B, and ¢ respectively, the initial position of a, b, and
and ¢ coincidingwith the axes &, 7, and §, respectively (Figures 90 and 91).

FIGURE 90 FIGURE 91

The direction cosines of the system Eonot, relative to the system ayzcan
be obtained from (182) (see Chapter 1I, §3) by interchanging ¢ and 2, nand
y, Land z*. The result is:

z y z
t cosBcosy —cosfsiny sin B
vo sinasinBcosy} —sinasinPsiny4 —sinacosp
—~+cosasiny + cosacosy (319)
¢, —cosasinBcosy+ cosasinpsiny-4- cosacosp
-+ sinasiny ~+sinacosy

If the angle a is changed, P and 7 remaining constant, the trihedron zyz

rotates about the §y-axis withan angular velocity ;%(Figure 90) whose

projections on the z—, y-, and z-axes are, according to (319),

d d .
p.=—d%cospcos1, q'=—7:- cosPsin7, r.=%;-sinp. (320)
If the angles a and 1 are kept constant, the trihedron zyz revolves about
the y’-axis of the system Z'y’Z with an angular velocity%?—(z’y"z’ denotes the

position of the trihedron abe after the finite rotations through angles a and B
about axes ¢ and b have been completed) (Figure 90).
The direction cosines of the system zyz relative to the system zy/#

* In Chapter II, §3 the tihedron zp3z denotes the initial position of the axes abe, while here it denotes
their final position.
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" (Figure 91) are

t 4 v 4

z cosy siny 0

y —siny cosy 0

s 0 0 1
dap

It follows that the projectious of the angular velocity 3 °n the axes 2, ¥,
and 8 are respectively

(321)

p’=£- siny,

gy=3F cos1, (322)
r.=0.

If, finally, the angle ¥ is changed with @ and B remaining constant, the
trihedron zyz rotates about the 2-axis with an angular velocity r'=%}

(Figure 91),
The following expressions for the projections of the angular velocity of
the trihedron zyz on its edges are obtained through addition:

p= %%cospcon +;E—Bin1;
q=—:—:cospsin7+g%coo1 (323)

d 4
r= grsinp+3.

Assuming that the angles & and P and their time derivatives are small,
expressions {323) can be replaced by the following approximate expressions,

accurate to second-order terms in a, B, :—:—, and :‘—E:
d
P=3 0081’+;%lillf;
4
g=—3 sinT+§:—°°"r; (324)
=%
r——ﬂ-

Inserting these formulas into Euler's equations of motion
AR L C—Bar=N,,
B3 4(A—C)rp=AN,, (325)
CH+B—Ap=N,

[for the meaning of A, B, and C see explanations after (278) and (279)]
yields, since A=B(because of the dynamic symmetry of the rotor):

d*a a . d da . d
(5 cosr-+ g sn 1)+ CoF(— G ot S cosr) =
i d dB .
‘4(_g:—:"”'*'%mﬂ-cﬁ(%°°ST+zf-smT)=M,. (326)
d
ot —u,
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We multiply the first equation (326) by cestand the second by —sin T and - '

add them term by term. We then multiply the first equation by siny, the
second by cosyand add them again term by term. The results are the well-
known linear equations of the time derivatives of a and p:

d2a 4
AL HE =M.,
a8 e (327)
where
My=M,cos1— M,siny,
(328)

My=M,siny} M, cosy

are the sums of the external moments about the Z- and y-axes acting on the
gyro rotor, and

—c
H=Cgl (329)

is the angular momentum of the gyro rotor, constant, according to the
third equation of (326), if M,=0.

When the gyro is suspended in gimbals, the moments My and M also
include the moments of the inertia forces on the rotor due to the mass of
the gimbal rings (Figure 92). For small angles aand f these are

d2
— U105 —Ie 58, (330)

where I,and I, are the moments of inertia of the inner gimbal ring (or
housing) about the 2-, and y-axes, and [y is the moment of inertia of the

FIGURE 92

outer gimbal ring about the §-axis; this.axis coincides with the §-axis.
We introduce the symbols

A=A+ I+ 1., Bi=A+41,. (331)

Assuming the angle between the - and t,-axes to be small, the equations
(327) can now be written:

d2
1di

AR LR =M= M,

a2 a (332)
B3 — Hyy=M,.
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Here My is the sum of the external moments about the axis of the outer
gimbal ring acting on the outer and inner gimbal rings and on the gyro
rotor, and M,, is the sum of the external moments acting on the rotor and
on the inner gimbal ring about the y/-axis [Figure 92].

The moments ME‘, and My, include the moments due to friction in the
gimbals bearings, and the moment of the gravitational force, the moments
due to translational inertia forces, the moments of various additional forces
(e.g., correction forces), etc.

Equations (332) are widely used in practice for preliminary studies of
stability problems in gyroscopic systems.

In deriving (332) terms of second and higher orders in a and P and their
time derivatives were neglected. It was also assumed that the moment M,
is zero. For more exact solutions these terms must be included.

Many other simplifying assumptions were also made. The imperfect
perpendicularity of the gimbals axes caused by manufacturing errors, the
clearances in the bearings, the elasticity of the gimbals elements, the fric-
tion in the rotor shaft bearings, etc., were neglected.

There is thus no sense in analyzing the stability of the motion by means
of differential equations of higher order than the linear equations (332),
without taking into account experimental data.

When the gyroscopic system is known to be stable and the main aim is to
study its accuracy, equations (332) can in many cases be considerably sim-
plified by omitting the so-called inertial terms

d?a a3
Ald? and B‘m' (333)
Equations (332) then become
BE—n,,
(334)

da
The equations obtained can be considered to result from the time aver-
aging of equations (332), with moments M, and My, varying slowly. In fact,
for constant Mg and My, the motion described by equations (332) can be re-
presented as thesum of the solutions of equations (334) and of the set of
homogeneous equations

d%a dp
Avga +H5=0,
(335)
d2B da
B;-F‘—,* -_ H“a‘— =V.
Equations (335) represent harmonic oscillations (nutations), usually of
high frequency:
v= L
VA;B;
dap

The average value of the solutions of equations (335) (-:—:'»and 4¢) is zero.

(336)

There is a simple geometric interpretation to equations (334). Draw
a plane perpendicular to the { ,-axis at unit distance from the origin of the
coordinate system gl (Figure 93). Denote by G, the intersection of this plane
with the vector of angular momentum H(or, which is the same, the axis of
rotation z of the rotor) drawn from the origin,



Using (319), the following expressions are obtained for the coordinates
of point Gg:

§,==0G, cos £,z =0G, sinB,
1o =0G, cos 1yz—=—0G,sina cos B, (337)
L =0G, cos Lz =0G,cosa cosp.

Since {,==1, by neglecting all terms of higher order than the second in a
and B we have

=P wp=—ea (338)
Inserting (338) in (334) yields
a% __
B =My (339)
dn __
: HT_‘”"‘
The derivatives -TE:L and %@_ represent the projections on the axes §, and

7 of the velocity of point Gyrelative to the system g, which has a trans-
lational motion with axes oriented according to the Newtonian frame.

FIGURE 93

d . .

The products Hd—e" and H—d‘% represent the projections on the axes of the
velocity of the end point of the vector Hreferred to the same coordinate
system. The following approximation is valid because of the smallness of
the angle a between the axes y and ¥,:

My=M,, (340)

Equations (339) thus equate the velocity of the end point of the angular
momentum vector to the moments acting on the gyro*, This follows also
from the general theorem on angular momentum if it is remembered that
the total angular momentum of the gyro is practically equal to H, re-
presented by a vector always directed along the rotor shaft. Equations
(334) or (339) form the basis of the elementary theory of gyroscope pre-
cession,

* For a more detailed treatment see the author's paper "K teorii giroskopicheskogo mayatnika"
(Theory of the Gyroscopic Pendulum), — PMM, Vol, 21, No. 1. 1957,
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It is convenient to replace equations (339), which describe the motion
of the rotor shaft referred to the system §ml,, by

Hv‘ =M£,
Ho,— M, (341)

referred to the moving system §q{. The latter is usually partially fixed to
the moving object ( the {-axis may be vertical, while the n-axis is directed
along the ship's course line). In (341) vy, and v, are
the projections of the "absolute" velocity (relative
to system gl of point G(defined as the interac-
tion of the axis of rotation of the gyro rotor with the
plane parallel to the §y plane and situated at unit
distance from it) on the moving axes §and 7 (Figure
94). It is assumed that the coordinates & and % of
point G are small compared with unity, and that
therefore the angles of deviation of the rotor shaft
from the {-axis are small; M and M, are the sums
of the moments about the §-and y-axes acting on
the gyro rotor, including the moments caused by the
reactions of the rotor bearings.
The coordinate systems gm{, and ¢x€ have a com-
mon origin at the point of intersection of the rotor
FIGURE 94 shaft and the axis of the inner gimbal-ring pivots
or gimbal housing. We denote by w,, w,, w the com -
ponents of the angular velocity of the trihedron £ (Figure 94) relativetothe co-
ordinate system Egufe. The projections of the velocity of point G on the axes
§ and 5 are:

— 3t
vy=gy +1-0,— 10,

(342)
d
V= -ﬂ—-{-im‘—i .o
Equations (341) thus become
at — M -
H(Ti?"""n""‘“z)"‘”s’ (343)

d
H(Z +to—o) =M,
These equations have many practical applications.

Equations (334), (339), and (343) can obviously also be obtained by
Lagrange's method by writing the equations of motion of the system in
generalized coordinates. Lagrange's method is particularly suitable for
setting up the equations of motion of complex gyroscopic systems mounted
on oscillating and rotating bases. Many relationships that are far from
obvious are obtained almost automatically by this method. Its drawback
lies in the complicated calculations necessary, since the small terms are
eliminated from the equations only at the very end. In addition, the inter-
play of forces in the gyroscopic system remains obscure.

When the equations of motion of a gyro mounted in gimbals are set up
by Lagrange's method, it is first of all necessary to establish an expres-
sion for the kinetic energy of the system ''rotor-gimbals" in its motion re-
lative to the coordinate system Egngl,, whose origin is at the gimbals center
and which has a translational motion,

111



Let §xf be a coordinate system fixed to the moving object, the §-axis
being the axis of the outer gimbal-ring pivots. The kinetic energy of the

outer ring is ' d 2
a .
Ty= [zt,(ﬁ + ) 41y, (0, cosa+ o, sina) +

+I;.(—-w.sina+m‘cos¢)‘]. (344)

where a is the angle of tilting of the outer ring relative to the coordinate
system {q{, and o, o, o are the projections of the angular velocity of this
coordinate system on its axes; Ig‘, Im- Ig are the moments of inertia of the
outer ring referred to the coordinate system §w,(, (Figure 95) fixed to this
ring in such a manner that the §,-axis coincides with the §-axis, while the
nraxis coincides with the y’-axis of the inner ring (or the housing).

&t
1)
7
doc £8,
dt
FIGURE 95 FIGURE 96

It is easily seen from Figure 95 or the table of direction cosines of the
coordinate system gy, relative to the system gy

£ " ¢
1 0 0 345
nw O cose sina (345)
G O —sina cosa
that the expressions
o= G+
vl,= w,co8a+wsing, (346)

ol =—w,sina o cosa

represent the projections of the angular velocity o!of the outer ring on the
axes of the coordinate system gy, fixed to it.

Let us now find the projections of the angular velocity @’of the inner
ring on the axes of the coordinate system z'y’Z fixed to this ring in such a
way (Figure 96) that the Z'-axis is directed along the rotor shaft 2z, while
the y-axis coincides with the w-axis of the outer ring. This angular ve-
locity differs from the angular velocity of the outer ring by the vector of

the relative angular velocity -:—f-, directed along the y/-axis. From the
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* direction cosines of the system Zy's relative to the system §ml;:

& o] G
2  cosP 0 —sinp
v 0 i 0 (347)
14 sin B 0 cosP

and from (846), these projections are found to be

'y =(-:—:—+¢‘)coop-—(—o‘sin¢+m‘cos¢) sin B,

or’,=o‘cosa+o‘slnu+—:g-, (348)

o'y =(%+q)sinP-{-(——m‘sinc«}-mccosc) cos f.

The kinetic energy of the inner gimbal ring is therefore
7y=5 {1 (5 + =) cosp—(—o,sinato cosa)sin BT+
+1,(scosat-o sinat3 )+
+1, [(%“'--}-me)sin B+ (—o,sin u+m‘cos a)cos ﬂ]’} . (349)

where I, I, Ipoare the moments of inertia of the inner gimbal ring re-
ferred to the axes 2, ¥/, 7.
The kinetic energy of the rotor is

Ty= 114 G*+ a9 +-Cr, (350)

where the projections p, ¢, and r of the rotor's angular velocity on the z-,
y-, and z-axes fixed to the rotor are

p= -:—:cosp cosr+%f—sin1+w£cosﬂoosr+
+m‘(sinasinﬂcosr+cosasin N+
+ o (—cosasinp cosy +-sinasinfy),

g= ——-g-:-cosp sinx—l—%f—cos*(—wgcospsiny-l—
+ o, (—sinasin Bsin4-cosacosy)+4 (351)
< w (cosasinPsin 1+ sinacosy),

r= %:— sinp-{—%‘l—f—misinp—-m,‘sina cosB-4-

- w, cosacosB,

which differ from the analogous formulas (323) by the presence of terms
containing 0, ©, and ®.. These terms are the projections on the axes
z, y, 2 of the angular velocity of the trihedron zyz relative to the system
Eml,- They are easily found from (182).

Inserting (351) into (350) yields the following final equation for the kinetic
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energy of the rotor:

T:=%{A[(—:—:-cos?-l-wicosB-{—m,.sinasinﬂ__m‘cosasinp)z_*_
+(%+m,cosa+wcsina)’]+C[(%+m£)sinB+

d . 3

+d—;'—(w‘sma—m(cosa)cosﬁ] } (352)

The total kinetic energy is equal to the sum of the kinetic energies of
the outer gimbal ring (T,), the inner ring (Ty), and the rotor (Ty):

r=r,+4+7,4 T, (353)

The generalized coordinates are here the finite rotations a, B, and 7t
about the axes §, y, and 2 respectively. It follows that the Euler-Lagrange

equations can be written in the form

d oT aT
H o da =My
"('E)
8 _or _ of _ a0,
dat d(% ap v (354)
d oT aT
Y T T B
o(ar)

where M, is the sum of the moments about the §-axis of all forces acting

on the system, including the inertia forces due to the object's motion,

M, is the sum of the moments about the pivot axis /, of the inner gimbal

ring of the forces acting on the inner gimbal ring (housing) and rotor, and
M,is the sum of the moments about the rotor's axis of rotation g, of the

forces acting on the rotor alone.
Ifo ®,, w are zero (this is equivalent to the assumption that the motion

’
of the Saase can be neglected, which is frequently the case when studying
problems of the stability of gyroscopic devices), then inserting (344), (349),

and (352) into (353) yields,
= L{U U+ Ay contp - (o + Crsintp (S5 +
+ 00+ () + () +2¢ 4 Srainp). (355)

Inserting (355) into (354), the following system of differential equations
is obtained after some simplifications:

[T+ U+ A) c0s*p+- (I, + C) sin®B) T +
+CsinpEE 4 Coosp g2 5T

—2(Iy—I,+A—C)cosBsinpie $ —u,, (356)
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whose axis is made to move together with the axis of symmetry of the gyro-
sphere by an accurate follow-up system. The common axis of the stator
and the supporting cup is linked by means of the latitude carriage K to the
heavy spherical pendulum M suspended in its gimbals. The latitude carriage,
whose function will be explained later, moves the stator axis from the pen-
dulum line in the northern and eastern directions through an angle propor-
tional to the cosine of the local latitude. When the ship turns, the carriage
is automatically rotated by means of a link with the gyrocompass.

4754é</

\N§SEEEEiSS
AR

RORONASRSY

A

M

FIGURE 97

This scheme does not make full use of the possibilities of aerodynamic
suspension. Much better results can be obtained through relatively minor
changes; as a result the error in the determination of the true vertical can
be reduced to several minutes of an arc.

The theory of the gyrovertical with aerodynamic suspension, and the
theoretical basis of the alterations that the author proposed already in
1940, are given below.

The gyrosphere is completely stable at normal speed of rotation, and
nutations produced by an external cause such as a shock are rapidly damped.
Accordingly, the equations of the elementary theory of gyroscope precession
should be used for describing the motion of its axis.

By replacing the letters §, 3, {by 2, y, 3 respectively, and Hby - H (it is
assumed that the gyrosphere rotates clockwise if viewed from above), equa-
tions (343) become

—H (5 —oy+e)=M,
(357)
_H(%-i_m‘z—w‘):ﬁly.

The coordinate system zyz, with its origin at the geometric center of
the gyrosphere, has its z-axis oriented along the local vertical (Figure 98).
The orientation of the z- and y-axes will be stated in each particular case.

Inequations (357) His the angular moment of the gyro; w,, ®,, o, are the
projections of the angular velocity of trihedron zyzon the axes z, y, and s,
oriented according to the Newtonian frame; z and y are the coordinates of point
G (Figure 98) at the intersection of the gyrosphere axis of symmetry with
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Iy + 4) -f‘—:-g—+(1,;—l,r+A—C)cosBsinP(%;)’—

da dy __
—CeosBgrgr =My (356)
d? . d?a da d
coLycsinp g +C cosp e L =M,

If all terms of higher order than the first in a and P and their time deriv-
atives are neglected and M, is assumed to be zero, the first two equations
are reduced to (332).

Gyroscopic systems are usually connected with electric devices which
cause the correcting and stabilizing moments. Lagrange's method of the
second kind* can be used for setting up the complete system of equations
for such an electromechanical system. The kinetic energy T in this case
also includes terms representing the energy of the magnetic and electrical
fields, while the number of coordinates of the gyroscopic systems is in-
creased to include the corresponding electric parameters. This method is,
however, of limited practical importance, the equations being usually set
up by elementary methods.

The equations of small motions of gyroscopic systems are, as already
mentioned, linear in the time derivatives of the coordinates. In certain
cases a 'linearization" of the forces acting on the system is possible; in
other words, they can be represented as linear functions of the coordinates,
or as linear functions of the coordinates and velocities when viscous fric-
tion is taken into account. Only such linear gyroscopic systems will be con-
sidered in this chapter. The classical examples of a linear gyroscopic sys-
tem is the gyrovertical with an aerodynamic suspension (cf. § 2 below).

In other cases the linearization is carried out by neglecting dry (Coulomb)
friction in systems with ideal (in particular, vibrating) bearings. Some
problems concerning the theory of essentially nonlinear gyroscopic systems
have been deferred to Chapters V and VL.

§ 2. Theory of the gyrovertical with aerodynamic
suspension and its possible improvements

The gyrovertical with aerodynamic suspension of the sensing element is
an instrument for the continuous automatic determination of the vertical
direction on a ship. The instrument gyro is a steel sphere with internal re-
cesses determining the dynamic axis of symmetry, with a special "head" for
controlling the follow-up system. The gyrosphere is driven by a rotating
magnetic field on the principle of an asynchronous motor, and has a constant
speed of more than 10,000 rpm.

The sphere is supported on an air layer one hundredth of a millimeter
thick formed between the rotating sphere and a bronze cup of rather intri-
cate form. The stator §, which creates the rotating magnetic field, and
the supporting cup are mounted on the inner gimbal ring. The bearings of
the outer gimbal-ring pivots are fitted to the so-called stabilized ring G,

* Bulgakov, B. V. "Kolebaniya” (Oscillations), — Moskva, Gostekhizdat. 1954.
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"the zf plane (the latter is parallel to the zy plane and located at unit distance

above it); M, and M, are the sums of the moments about the z-and y-axes
applied by the stator and cup to the gyrosphere. The z and ycoordinates
of point G are assumed to be small,

In order to establish the laws to which moments M,and M,are subjected,
we consider a gyrosphere on a so-called fixed base, i.e., with stator and
supporting cup of the instrument fixed relative to the Earth, the axis of the
stator and cup being vertical, The motion of the revolving gyrosphere axis
following a perturbation will then be such that point G traces a spiral (Fig-
ure 99) ending at a fixed point E distinct from point J in which the vertical

4

&
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(Te. Ye

FIGURE 98 FIGURE 99

axis % intersects with the horizontal plane £§. The distance between G and
E decreases in such a way that the ratio between the decrement per unit
time and the length GE is constant, and that the angle between GE and a fixed
horizontal direction increases in counterclockwise direction at a constant
rate. It follows that point G moves about point E in a logarithmic spiral

P==pt~ ", 6="06,4pt, (358)

where p, is the initial distance of G from E, and §, is the initial angle be-
tween EG and some fixed direction in the horizontal plane.

Let the east-west line be this fixed direction. Draw the z-axis of the
coordinate system zyz to the east, and the y-axis to the north. Denote by z,
and y, the coordinates of the fixed point E defining the equilibrium position
of the gyrosphere axis. The law of motion of point G can now be repre-
sented in the form

z=z,4pcosb,
y==y. 4 psinb,
where p and 0 are given by (358).

The projections of the angular velocity on the axes 2, yand 3 linked to

the stator fixed relative to the Earth (Figure 100), are
0, =0,
o,=Ucosg, (360)
w,==Using,

(359)
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where U is the angular velocity of the diurnal rotation of the Earth .
(0.0000729 sec~1), and ¢ is the local latitude.

The inverse problem of dynamics — determining the forces acting from
the known motion — can now be solved by inserting (360) into the differential
equations (357). It follows from (359) and (358) that

d d . de
%:%coso—psm07=
= —kpge ™ cos®— ppsinb=
=_k(=—zc —p(y—yc) (361)
and a
F=—kly—y)+p@E—z) (362)

Inserting (361), (362), and (360) into (357) yields
M,=—H[—ks—(p+ Using)y+ kz,+ py,+ U cos 9},

M, =—H[—ky+(p+ Usin¢)z+ ky,— pz.}.
The actual value of the coordinates z, and y, of point E or, which is the
same, of the angles between the equilibrium position of the gyrosphere

(363)

z
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FIGURE 100

axis and the yz and zz planes*, must satisfy:

kz, <+ py,+ Ucose=0,
ky,—p.‘l‘,:O. (364)

Using (364) and neglecting Usin¢ which is small in comparison with p
(the vertical component of the Earth's angular velocity being much less
than p) yields the following formulas determining the motion of the gyro-
sphere supported on a fixed base with the stator axis vertical:

M,=H(kt+py).
M,= H (ky — p2). (365)

Expressions (365) can be considered as the projections on the z- and
y-axes of the geometric sum of vector M, and vector M;, each of which is
proportional to the angle of deviation of the stator axis from the pendulum
line (Figure 101); the proportionality factors are k and p respectively.

* {[This is the actual equilibrium position,]
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The vector M, is parallel to the straight line connecting S and G and re-
presents the component normal to the gyrosphere axis of the torque M
due to the stator's electromagnetic field (Figure 102).

The vector M, is perpendicular to SG and represents the moment tending
to make the sphere's plane of symmetry coincide with the plane of the field.
This moment is, inter alia, causedby the magnetic hysteresis of the sphere's
material and the properties of the aerodynamic suspension.

- S [
y p
M.
G
M,
4 £ Hy
FIGURE 101 FIGURE 102

The main assumption on which the subsequent analysis is based is the
applicability of (365) to the case of a moving base. This assumption cannot
lead to serious errors, since the linear velocities of the gyrosphere cor-
responding to its rotation are much larger than the linear velocities of the
points of the stator when the pendulum linked to it oscillates.

On the strength of this assumption the equations of motion of the axis
of a gyrosphere supported on a moving base can be written [by inserting
(360) and (365) into (357)]

_H(.%"i—y Using 4 Ucos?)=kﬂ(3—5)+l’ﬂ w—)
ay . (366)
""H(W +z U sin 9)=kH(y—-"I)—PH (z—%),

where § and 7 are the coordinates of the point § at the intersection of the
stator axis with the horizontal zg§ plane (the Z-axis points eastward as be-
fore),

Let
t=u, n==v, (367)

where u and v are constants.
Then in accordance with (366), the gyrosphere axis will move toward
an equilibrium position whose coordinates z, and y, satisfy the equations

v Using — Ucosp =k(z;—u)+p () —)
—z, Using =k (y, —v) — p(z, —u).

The following equations have therefore to be satisfied in order that the
equilibrium position of the gyro axis be vertical, i.e., that zl=y‘=0:

U cosp =ku -} pv,
0=pu— kv,

(368)

(369)
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whence
__kUcose
=Ft
(370)
p(lwl9
M F

The stator axis must (Figure 103) therefore be inclined at an angle u to
the east and at an angle » to the north, or which is the same, at an angle

=V =28y 371)

ut 4 Brs (

in a direction which forms an angle ¢ with the east-west line, where
tg?:%:% . (372)

Assuming k=0.01 sec™!, p=0.00436 sec”!, thevaluesof u, v, s(for a
latitude of 60°) and ¢ are:

2=0.00305; »=0.00133; «=0.00333(11.5);
$=23°30.

This additional inclination of the stator relative to the pendulum line
(the line connecting the center of suspension with the pendulum's center
of gravity) is obtained by means of the latitude carriage K (see p. 116).

N L
{ . &(z.y)
§ y e
S(&q)
w 0,6 Y ow i F—FE
W [/ z
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FIGURE 103 FIGURE 104

We denote by a and B the coordinates at the point of intersection M of
the pendulum line with the z§ plane (Figure 104). The coordinates of §
are then

k
b=

v
1=t P

Inserting these expressions into (366) yields (after some transformations)

2 ket (p— Using) y=ha+ ph,

-';1". + ky— (p— Usin ¢) z=Fkf — pa.

(373)

(374)
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* We multiply the second of equations (374) by i=y—1 and add it to the
first. Writing

s=z+4iy and y=a-ip (375)

and inserting these expressions into (374), we obtain the following linear
differential equation of the first order:

& flk—i(p— Using))s=(k—ip)1. (376)

The solution of this equation for y=0 (vertically suspended pendulum;
a=p=0) is

1= xoe——ﬂei(p—vnlny)t_ (377

According to (377), point G moves along a logarithmic spiral from point
z=12, at t==0to point O for which 2=0 (Figure 105). In fact, it follows
from (377) that in this case

|3]=|2,] e, args=argz,+(p— Using)t; (378)

the length of Oz and its inclination to the Z-axis vary according to a law
similar to that given by (358).

y 2,

(ST
&)

FIGURE 105

Equation (376) can be used for studying the behavior of the gyrosphere
during the ship's rolling when on a fixed course.

Let the y-axis be directed along the ship's course line and let the rolling
of the ship cause oscillations of the pendulum given by

a=a,sinpt, B=0, (379)

where a, is the amplitude of pendulum oscillations relative to the vertical,
and p, the frequency of roll.

Because of the large difference between the period of natural oscillations
of the pendulum and the period of roll, it can be assumed that the pendulum
is at any moment directed along the apparent vertical, If the center of the
pendulum's suspension is located at a distance [ from the axis about which
the ship rolls with an amplitude 6,, a,is given by

a,=EL0, (380)
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We insert (375) and (379) into (376) and express sinp¢ by exponential -
functions. The following equation is obtained after neglecting Usin ¢ which
is small in comparison with p:

Lt (e ip) s 2 ET 0 i — ) (381)

It is sufficient to find the forced oscillations of the gyrosphere axis,
since its free oscillations are given by (377) and become damped with time.
The solution of the differential equation (381) is,

__ ag(k—1ip) elnt eipt
2= 2ok~ [k (382)

—ip—p k—ilp+w

The components in brackets can be interpreted as vectors of different,
constant moduli rotating in different directions in the complex plane with
equal angular velocities. Solution (382) corresponds therefore to a motion
of point G along an ellipse (Figure 106) with semiaxes

a VEE ¥ 52 1 + 1
2 ki (p—p) | VEE+(P+eP
b VEELP 1 _ 1 (383)
2 B+ (- VR (pEeR |

The frequency of roll u is of the order of 0.5—1.0 sec™!, and is therefore

much larger than the parameters kand p. Formulas (383) can therefore
be replaced by the following approximation:
ag Vit 4 pt

g=
B

ap Vk? + p*
ll

(384)
b= <a

These last formulas could also have been derived directly from (374)
by neglecting in them the terms containing z and y. These terms are in
fact considerably smaller than the right-hand sides of the equations since
the gyro-rotor shaft deviates from the vertical far less than the pendulum
line, We thus have

z .
ar = kaysinpt,

dy i (385)
4 == —P%sin pt,
whence
o ke
= a cos pt.
(386)

o~ P‘o cosp‘

These equations define a harmonic motion of point G along a straight line,
the amplitude being given by the first of equations (384). Inserting (380) into
(384) yields the following final expression for the amplitude of the oscilla-
tions about the vertical carried out by the gyrosphere axis caused by the
rolling of the ship:

p VR g2

P g, (387)

a=
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. Numerical example. IfI=8m; k=0.0100 gsec~!; p=0,00436 sec"!;
0=10.209(12°); andp = 0.6 sec~! (period of roll about 10 sec), then using
(380) and (384) we obtain

a,=0.0614 (3°31'), a==0.00112 (¥), b=0.00001 (2').
To reduce the error in the instrument indications caused by the rolling
of the ship, a special device is used in gyroverticals. This device restricts
the pendulum's deviations from the perpendicular to the deck plane to 4 —6°,

y
a b
T
FIGURE 106

Such a device is not always necessary. In the above case, for example,
the amplitude of the pendulums angular oscillations is less than 4°, In ad-
dition, the pendulum's oscillation on the inclined deck of a listing ship will
be asymmetrical, leading to considerable errors. Finally, errors of the
type of the phenomena observed by M. 1. Zaitsev (Chapter VI, § 1) can occur
evenwith symmetrical oscillations when the pendulum is periodically stopped
by the restricting device.

It is therefore desirable not to restrict the sway of the pendulum, This
could, however, cause possible large inclinations of the stator and the sup-
porting cup, which could impair the normal functioning of the aerodynamic
suspension. The instrument error due to rolling would, in addition, remain
considerable,

Both these difficulties are avoided by the following alteration of the in-
strument,

In the original gyrovertical design the pendulum, suspended on its gim-
bals, is connected by means of the latitude-carriage pin with the support-
ing cup and the stator; these have their own suspension. A deviation of the
pendulum center line from the instrument axis therefore causes an identical
deviation of the stator axis.

Consider a rod-shaped lever one of whose extremities is hinged by
means of a ball-and-socket connection Gto a stabilized ring (Figure 107)
while the other extremity is hinged by means of a sliding ball-and-socket
connection K to the pin of the latitude carriage mounted on the pendulum. Let
the stator also be hinged to the rod by means of another sliding ball-and-
socket connection §, Letthe distance between the centersof G and § be 1/n
times the distance between the centers of G and K.

Draw lines connecting the centers of these points with the center of the
gyrosphere, and produce them until they intersect with the horizontal
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plane z§ (Figure 108). The points of intersection will be designated by .
the same letters G, S, and K as the corresponding connecting points. The
coordinates of point G are obviously z and y, since the stabilized ring fol-
lows the motion of the gyrosphere. The coordinates of point Sare £ and
%, in accordance with the notation adopted above. The coordinates of point
K are denoted by ¢ and t.

If the coordinates of point M (the intersection of the pendulum line with
the z£g plane) are as before denoted by & and B, the following relationships
will obtain between the coordinates of points K and M:

a=¢+u,
t=B+4v.

Here uand v define the position of the latitude carriage pin relative to
the pendulum line and enable the infuence of the Earth's rotation on the
equilibrium position of the gyrosphere axis to be eliminated.

(388)

FIGURE 107 FIGURE 108

Points § and K coincide in an instrument without an additional lever
system, i.e., n=1, uwand v being determined by (370) for the condition that
the z-axis points to the east.

The following proportion, accurate to first-order infinitesimals, fol-
lows from the theory of similar triangles (Figures 108 and 109):

f—=z __n—y__SG __1
c—=z t—y XKG ®»° (389)

Using (389), equations (366) can be written

—H %—yUsin 9+Ucosy)=kﬂ’-:_“+pli "_g—" .
(390)

d . —B— ——
_H(—d—"’--}-xstn?):kH" P—v ppgi=e—8
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If u and v are chosen so as to satisfy the equations

_ (391)
0= pnn kv ,
then equations (390) can be reduced to
d. k . k
F+aetH(E—Using)y=1a+ L8,
(392)

—:‘l +Tk-y—(%—Usin?)z=—:-p—-:—a.

Equations (392) differ from (374) only in that the parameters k and p have
been replaced by magnitudes n times smaller; this is equivalent to saying
that the influence of the pendulum's sway on the gyrosphere (the correc-
tion) has become less. The instrument error during rolling will obviously
be reduced by exactly the same factor, and (387) should be replaced by

R
,,=P‘_M+PLQ., (393)

If n= 8 for the same values of g, I, k, p, and 0, as before, then a=
= 0.000140; this corresponds to an error of about half a minute of arc.
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By comparing (391) and (369) we find that the deviations uand v in the
eastern and northern directions must now be ntimes larger than before.
For n=8, the total angle of deviation, s, where

— 2Ucosy
e—= VEr (394)
(by analogy to (371)), is about 1.5°,

To obtain the same result, different lever arrangements could be pro-
posed, all causing a suitable change of u and ». For instance, the latitude
carriage could be placed on the stabilized ring or connected to the stator.

If the latitude carriage is placed on the stabilized ring, then (Figure 110)

§—o_n—t__ SK __
e—e B—ct MK

1
- (395)
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where

o=x+u,
t=y+o. (396)
The following relationships are easily derived:
- —1
z—t= z = a_n a,
(397)
yv— n—1
y—r=12E 222,

Using them, equations (366) can be transformed into a form similar to
(390), and then, by suitably selecting s and v, into a form similar to (392).

Until now it was assumed that the ship maintains a constant course and,
in addition, that the component of the angular velocity of the system zyz,
caused by the ship's motion on the curved surface of the Earth, could be
neglected. This component is horizontal and directed to port perpendicular
to vector V (Figure 111); its value is equal to the ratio of the ship's speed
¥V to the Earth's radius.

Consider now the general case of a ship's motion. Since for n=1 the
scheme is equivalent to that of a gyrosphere without additional lever ar-
rangement, we can write the equations of motion for an arbitrary value of n.

Z
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Let x be the ship's course*, The y-axis of the coordinate system zy3 is
parallel to the ship's course line. The projections of the angular velocity
of the trihedron zyz (Figure 112) on the axes %, ¥, z are respectively,

m,=—Uc059sin:—-%cosB,

= Ucosq:cosx—!-sin& (398)

® R

y
o,= Usinp+w,
where 3 is the drift angle (Figure 113), and w, the speed of the ship's

* The ship's course has already been defined in Chapter 1, §1 (see p. 10).
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rotation, connected with the course by the relationship

dx
W= — W. (399)
The ship's roll has practically no influence on the mean position of the
gyrosphere axis. It will therefore be neglected.
The tangential and normal acceleration of the point on the ship at which
the instrument is located are (Figure 113):

av

w, = (400)
a
w,=(w +7‘-)V. (401)

The projections of the total translational acceleration of the pendulum's
center of suspension on the z- and y-axes are therefore

w,=—-'% sin 8—(«:-{-%}[’«:038,
(402)

av dd .
w,= 3r cosa—(m-l-a—‘)l’sm s
Due to inertia, the position of the pendulum deviates from the vertical during
translational motion. The coordinates a and B of point M, defining the pen-
dulum's position in the coordinate system zyz, are approximately

w
@ == — p=-=%. (403)
8

The displacements u and v of the latitude carriage pin, determined by
(391), take place in the eastern and northern directions respectively

v y y
N
x> S
s v E
We \| u
N z ) Uy z
L et Y Uy
S
FIGURE 113 FIGURE 114

(Figure 114). The corresponding displacements g, and u, in the directions
of the z- and y-axes are

u,=—Uucosx—vsinx,

404
u,=usinx+4vcosx. (wod)
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Using (398), equations (357) can be written in the form

—H %—(w—{- Usinv)y-{-Ucosq:cosx—%— sin&]:M"
v (405)
g‘:"'f"(w-}- Usin ¢)z - U cos ¢ sin "+7§'0086]=M .

The expressions for M,and M, are of the same form as the right-hand
sides of (390) if u and v are replaced by u,and u,. The following expres-
sions can therefore be written:

a3 £y )

k bt -
uy=a 3= —u) =)

in which @ and B have been substituted from (403).
We insert (406) into (405). After simplification the following equations
are obtained with the aid of (391) and (404):

(406)

d k . v . kw, , P¥

Gtts—(o+Using—E)y= Feindf 2

4 k |4 kw, (407)
. W,

HtLtyt(otUsing—L)o=—fcostf "o,

Using (402), the following differential equations are finaliy obtained
for the motion of the gyrosphere axis with an arbitrary motion of the

ship:

:: +—.t-—-(w+ Usm?——)y—

=Tr—sm8+n([————-sm&—(w-}-:—:)l’cos8]+
—{-n—p‘[%‘:—cosa——(m-*—g—:-)l’sina}‘
dy ' (408)
4 (ot Uomg—2)em
— Foosdt o G cosd—(a +3)Vsind | —
l"‘[-—-——sma---( +-‘H)Vcosb].

Only ordinary turns will be considered at this stage. In this case the
linear velocity V of the ship, its angular velocity w, and the drift angle §
are constant. We shall neglect Usin¢as being small compared with w.
Equations (408) then become

I

dz | k vV . k .

.a_"f_g._z__(w_;’.)y:?sm&——;;Vcosb—:—'-:Vsmb,
409

‘;’L*.,’iy_*.(w_%) =—%cos&-—%l’sin8+%";l’cosb. (409)

This system of two differential equations is equivalent to the following
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linear differential equation in the complex variable 3=z4-ly
dz k |4 k—1t
The solution of this equation is

i k—1tp
L ’ —_
—|s+4e-L)t tmgt+—o0

3=Ce [+ +4=-%)] —,‘L—"‘-P— Vet

CRul (“—7)

which consists of two terms. The first is determined by the initial motion

and decreases with time, while the second represents the limiting equi-

librium position of the gyrosphere axis relative to the coordinate system

zyz, rotating about the vertical z-axis together with the ship.
The modulus of this second term

(411)

ng \3
P4 "_'i'(_"ﬂ)_ (412)
e ki (p—nw)?

defines the error in the readings of the true vertical during ordinary turns.
The errors for right or left turns at the same absolute angular velocity

w are different. Take for instance V= 20 m/sec (about 40 knots) and |o|=

=0.01 sec™! {corresponding to 10,5 min for a 360° turn at a radius of 2000 m).

For a left turn (0> 0)

9=1°% for n==1 and 9¥=10 for n=S_§,
for a right turn (o < 0)

$=44 for n=1 and 9=9 for n=S_8.

The turn for which the steady deviation of the gyrosphere axis from the
vertical is a maximum is called resonance turn. The angular velocity e,
at a resonance turn (n=1) and the corresponding deviation 9, of the gyro-
sphere axis from the vertical are approximately
— B+
b

14 ’

Y _PLB Y (413)
r— k ‘ .
These values can be obtained from (412) by neglecting the term containing
the Earth's radius R, and then finding the maximum for 9.
The following results are obtained using the values of p, k, and V as-
sumed before:

w,=0.0274sec-1,8, = 1°24'.
The error is of the same order of magnitude if the ship's speed is in-
creased or reduced on a straight course. The corresponding equations of

motion are obtained by inserting n=1, =0, 3=0 into (408). The fol-
lowing system of differential equations is obtained by neglecting again

Using, small incomparison with p, and also the angular velocity %:

d av
d—:+kz+py=—57‘-, (414)
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dy __kav .
a—‘--{-ky—pz--‘--d—‘. (414)
This system is equivalent to the following differential equation in the com-
plex variable z:

g{‘*‘(k—-ip)z:t(k'—ip)%_ =z -+ iy). (415)

Bulgakov's methods of analyzing this equation and of the maximum pos-
sible deviation of the gyrosphere axis will not be given in detail here*.
Instead, an approximate calculation, assuming that the ship is uniformly
accelerated, will be carried out.

If the ship is accelerated at a uniform rate during time T [from a stop]
to a maximum velocity V., the following expression is obtained by inter-
grating (415) for ¢T with the initial condition z(0)=0:

sy =" — et (416)
1t follows that the maximum deviation of the gyrosphere axis is of
the same order of magnitude as the deviation of the pendulum

vu-x
0,:’.7’,—. (417)

For V .= 20 m/sec and T= 2 min this gives 8,=0.01700 (58",

These calculations show that if no special measures are taken, the er-
rors in the instrument readings may reach unacceptable values when the
ship manoeuvers.

In practice, the so-called 'correction elimination' is frequently applied:
before the ship begins to manoeuver the gyrovertical pendulum is fixed by
clamps relative to the stabilized ring in such a manner that the pendulum
line and the axis of the ring coincide.

Experience shows that this procedure causes considerable error.

The lever arrangement described above does reduce the instrument
errors during manoeuvers, though not completely. The method of eliminat-
ing the instrument errors by artificially inclining the stator axis through
an angle proportional to the ship's speed, corrections (also proportional to
this speed) being automatically introduced in the instrument readings, is
therefore of interest#*, The necessity for log readings and the impossi-
bility of completely eliminating the instrument errors without complications
due to the drift angle are drawbacks. This is further aggravated by our im-
perfect knowledge of the laws of variation of the drift angle.

Consider the case when in addition to the displacement undergone by the
latitude carriage there is an additional displacement of its pin caused by an
attachment connected to the log, so that the coordinates of point Kon the 2§
plane increase by aV and bV respectively (a and b are coefficients that have
to be determined).

* Bulgakov, B. V. O nakoplenii vozushchenii v lineinykh kolebatel'nykh sistemakh s postoyannymi
parametrami {Cumulative Perturbations in Linear Oscillatory Systems with Constant Parameters). —
Doklady Akademii Nauk SSSR, Vol. 51, No. 5. 1946,

** This can be compared with the method of compensating the gyro-pendulum ballistic errors and with
the method of introducing an additional gyrohorizon with a variable angular momentum for compensa-
ting the inertia forces of the translational motion by gyroscopic forces (cf. below §3). These methods
were proposed by V. I Kuznewsov, Ya, N. Reutenberg, etc.
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- The moments M and M,are in this case (by analogy with (406)):
_ k w P w,
M,..H[-”—(z——‘!—u,—aV) + < (y—-i!—u,—bV)] .
[k v » g (418)
M,_H[—n-(y—T'—u,—bV) —;(z ': u —aV)]

Inserting (418) into the differential equations (405) yields, after simplifi-
cations similar to those made in the derivation of equations (407), the fol-
lowing system of differential equations describing the motion of the gyro-
sphere axis:

S+ Ea—(o+Using—2)y=
=%—sin6+£—(%+aV)+%('—:l+bV),
&+ syt (ot Using— L)o=
=—F cosd+ X (24 ov)— 2 (e yab).

Equations (419) hold, as equations (408), for any law of variation of the
ship's speed ¥V and its angular velocity e.
Assume that the drift angle § =0. Equations (402) then become

(419)

wy=—oV, w,=% . (420)

This also follows directly from the formulas on the motion of a particle.
In this case equations (419) become

atae— (=R =T VG,
Lav (421)

by (o D) et H 4 o0 ) 2 ).
The terms containing the vertical component Using of the Earth's angu-
lar velocity have been neglected in (421) for the reasons given above,
Equations (421) form a system of linear differential equations with vari-
able coefficients. The general solution of such a system is the sum of the
general solution of the corresponding homogeneous system

d k

&t ar—(e—E)y=0,
d
#+avt(o—2)z=0

and of some particular solutions of the nonhomogeneous system (421). The
solution of equations (422) can be represented in a complex form similar to
(377)

(422)

¢
_X=ip,-ifet
2=Ce * e (z=z+iy), (423)

where C is an arbitrary complex constant.
The modulus of the complex function z tends to zero with time independ-
ently of the value of C.
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It can be shown that
. __k 14
z_n' Vv, V= , (424)

are a particular solution of the nonhomogeneous system (421), provided the
coefficients a and b are suitably selected. In fact, inserting (424) into the

left-hand sides of (421) yields
Pk __
2 e =ka + pb,

k2 — p?
%"I" n:P =kb—'pa|

which can be considered as two equations with two variables aand b. Their
solution is

(425)

Y .
o=m [t —wEimm ]
—k ntg
b=g[! +wremw ]
For n=—1 and the same values of k and p:
a=10.000438 sec/m,

5»=0.001033sec/m.

At V= 20 m/sec (40 knots) the stator is inclined by the following addi-
tional angles to starboard (in the positive z-direction) and forward (in the
positive y-direction):

aV =0.00876 (30), bV =0.0207(1°11).

The gyrosphere axis is inclined by the following angles to starboard
and forward:

(426)

E“i —0.00888 (31'), ’_"1 = 0.0204 (1°10).

It is thus seen that if the values of the angles given by (424) are auto-
matically subtracted from the instrument indications with the aid of an
attachment connected to the log, the instrument will indicate the true verti-
cal also when the ship manoeuvers provided the drift angle is zero.

The latitude carriage pin is always displaced under the same angle to
the ship's course line.

The attachment to effect this displacement can be located not only on
the pendulum, as assumed above, but also on the stator or on the stabilized
ring. The values of the coefficients in (424), and of a and b vary accord-
ingly.

Assume that the drift angle is not zero. For a steady turn, even if

cosdz=1,

terms containing sin 323 will appear on the right-hand sides of (421), as
follows from (409), and their influence cannot be neglected. These terms
occur because the component of the centrifugal force parallel to the ship's
course line acts on the pendulum during the turn, If the drift angle is small,
the errors due to these terms will be a fraction of the total error of the
instrument during turns without the correction elimination calculated above.
Thus the error for a drift angle of 6° is of the order of 6 —7 minutes of arc,
the linear and angular velocities of the ship being as before.
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The error during turns due to drift becomes comparatively small if the
instrument is equipped with a lever attachment. In this case, however, the
vertical component Usin ¢ of the Earth's angular velocity in equations (408)

can no longer be neglected in comparison with —,P? during an increase or re-

duction of the ship's speed on a straight course. In fact, at 60° latitude and
for n=8:
Usin ¢ =0.0000628 sec !, £=0.000545sec-!.

]

It is thus seen that the influence of the terms in (409) caused by the iner-
tia force is only partially eliminated in the case of drift.

The laws of variation of the drift angle are imperfectly known, as al-
ready mentioned, and only certain assumptions can be made about them.

One meriting attention is a direct proportionality

=cow (427)

between the drift angle 3 and the angular velocity w, the coefficient ¢ de-
pending on the hydrodynamic properties of the ship.

Relationship (427) can be used for further improvements of the instru-
ment, such as by an additional rotation of the stator relative to the z- and
y-axes depending on the direction of the velocity of the point at which the
gyroscopic instrument is located in relation to the ship's course line. In
this case the accuracy of eliminating the instrument errors caused by the
inertia forces appearing during the ship's manoeuvers will depend only on
the accuracy of the log. We will not discuss this point further.

In conclusion, the principle of aerodynamic suspension can be used for
developing new gyroscopic devices such as a gyroscopic pendulum with
Schuler - Bulgakov period (84.4 min) which is free from so-called ballistic
deviations (deviations caused by the inertia forces of the translational
motion),

A combination of two such pendulums, with gyrospheres rotating in
different directions, makes it possible to eliminate also the velocity devia-
tions during manoeuvers and to determine (at present inaccurately because
the instruments do not yet give satisfactory performance) the velocity with
which the ship or any other object on the Earth's surface moves (the so-
called absolute log).

Since in the absence of a latitude carriage the gyrosphere axis deviates
from the vertical in a direction determined by the compass and depending
only on the latitude, it is possible in practice to design a gyrolatitude with
simultaneous indication of the ship's course.

A perfect directional gyro with horizontal rotation of the gyrosphere
can be designed.
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§ 3. Gyrovertical with auxiliary gyro

Two contradictory technical problems have to be solved when gyroscopic
devices such as the gyrovertical are being designed. The first consists
in the selection of sufficiently effective attachments which will orient the
gyros in space to a position in which the instruments will indicate the true
local vertical.

Without such so-called correcting attachments, the gyros if left to them-
selves, will change their orientation very rapidly within excessively wide
limits, even when suspensions of the highest quality are used. This is
mainly due to the friction in the bearings of the gyro suspension during the
oscillations of the object on which the gyroscopic device is mounted.

The attachments used are pendulums of various types which either act
directly on the gyros, as in the scheme described below, or control sole-
noids which apply moments to the gyros in the necessary direction. Other
correction methods also exist. Obviously the attachments function only
so long as the moments which they apply to the gyro are greater than the
frictional moments in the bearings of the suspension. In addition, the ac-
tion of the corrective attachments on the gyro is restricted by the friction
in the bearings of the corresponding pendulums. Pendulums with a suffici-
ently large moment of inertia are to be used in order to overcome the in-
fluence of the friction forces.

The second problem is to eliminate the influence of the corrective at-
tachments on the gyros during manoeuvers., In general, the manoeuvering
accelerations are small, but due to the duration of manoeuvering the gyros
change their orientation considerably because the corrective pendulums re-
act to these accelerations. This influence increases with the moments of
inertia of the pendulum in the case of linear-type corrective devices (such
as the device described below). Finally, excessive linear correction leads
to large instrument errors during rolling. Corrective devices of the non-
linear type have their own shortcomings, in particular during rolling (cf.
Chapter VI, §1).

The availability of a log on the ship and the possibility of feeding its data
to the gyroscopic instruments by means of a synchronous link have made it
possible to work out schemes for additional attachments so as to avoid the
errors of gyroverticals during manoeuvers. The theory of such a device
for a gyrovertical with aerodynamic suspension was given in § 2 of this
chapter.

Another similar device is described below, Its peculiarity lies in the
fact that no corrections proportional to the velocity have to be introduced
in the readings of the instrument itself in order to obtain the true vertical.
The appearance of a drift angle during turns interferes with the proper
functioning of this device.

Consider a gyroscopic system (Figure 115) whose basic gyro has a
vertical axis and is suspended in gimbals from a so-called stabilized ring*.
The perpendicular to the plane of the stabilized ring is made to move to-
gether with the axis of the basic gyro by means of follow-up systems; the
ring itself is the inner gimbal ring of a bicardan suspension (Figure 7).
The bearings of two upward-turned pendulums, connected by angular levers
and hinges to the basic gyro housing, are mounted on the stabilizedring. The

* The gimbals of the basic gyro and the stabilized ring are not shown on Figure 115,
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function of these pendulums is to force the axis of the basic gyro into the
vertical.

The housing of an additional gyro, whose rotor axis is perpendicular to
the axis of the basic gyro (and therefore horizontal when the instrument
indicates the true vertical), is rigidly connected to the housing of the basic
gyro. The function of the additional gyro is to counterbalance the influence
on the basic gyro of the corrective pendulums and of the mass of the two
gyros during manoeuvers. Thus the axis of the additional gyro rotor is

oriented at a specified angle ¢ — -;- toward the direction y of the ship's

course line, and the angular velocity of its rotor is varied in proportion to
the ship's speed V.

-1
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FIGURE 115 FIGURE 116

To obtain the equations of motion of the gyroscopic device, we introduce
a moving reference frame zyz with vertical g-axis, and y-axis parallel to
the ship's course line (Figure 116),

As in § 2, a horizontal plane Z§ lies at unit distance from the cente: of
the gimbal system of the gyros. Let G be the intersection of the axis of the
basic gyro with the 2§ plane, £ and y being the abscissa and ordinate of this
point respectively.

The equations of motion of the axis of the basic gyro can be written,
similarly to (405),

H[g';_‘(‘”"f' Usine)y 4 UCOS?cosx—iV-sin 8]=M,+m,’

428
H %-{—(m—f- Usinqa)z-{-Ucoscpsinx-}-%cosa:]:!ll,-{-m,. (428)

Here H is the angular momentum of the basic gyro, directed upward (the
rotor of the basic gyro rotates counterclockwise when viewed from above);
M, and M, are the moments about the z- and y-axes imposed on the housing
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of the basic gyro by the corrective pendulums together with the frictional
moments, the moments of the so-called latitude correction and, in addi~
tion, the moments due to gravity and the translational inertia of the gyros (in
case their center of mass does not coincide with the center of its gimbal
system); m, and m, are the moments about the same axes due to the effect
of the inertia of the additional gyro on the basic gyro. The remaining nota-
tion remains as in § 2 of this chapter. The magnitudes z and y in (428) are
small compared with unity.

The frictional moments at the pivots of the basic-gyro gimbals are of
the order of several gcm when high-quality bearings are used, and may
vary during operation within wide limits due to various random factors
(position of the bearing balls, dust, lubrication, temperature, etc).

Under these conditions there is no sense in retaining in equations (428)
the terms containing the vertical component U sin-¢ of the Earth's angular

velocity and the angular velocity T‘;' due to the curvature of the Earth's

globe,
Assume the angular momentum of the basic gyro to be H =540000gcm sec,
and let the gyro axis deviate from the vertical by half a degree to the south.

FIGURE 117

It follows that at a latitude of 60°,
HUysingp=0.3 gcm.
If the ship's speed is ¥ = 20 m/sec (40 knots), then

|4
H—i=1.7 gcm,

These terms are therefore of the order of the accuracy with which the
values of the frictional moments are given, and can be neglected in equa-
tions (428).

The terms containing the horizontal component Ucos ¢ of the Earth's
angular velocity can be eliminated from (428) by adopting special measures
for cancelling the effect of this component on the basic gyro. Thus moments

M}=HUcosgcosx,
M;=HUoos<pslnu,

(429)
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can be applied to the housing of the basic gyro by means of a moving load Q*
(or by any other means). The load Q* must be placed on the housing of the
basic gyro in such a way (Figure 117) that it is always at a distance r to
the south of the gimbals center, where

Q*r=HU cosg. (430)

In order to reduce the effect of the load @Q* on the basic gyro during
manoeuvers, its center of gravity must lie on the perpendicular to the
rotor axis, passing through the gimbals center.

This load causes terms equal (up to higher order infinitesimals) to the
terms containing the horizontal component Ucos ¢ of the Earth's angular
velocity to appear on the right-hand side of (428). These equations thus

become

H(%—'“’y)-_'Mt""mn

dy (431)
H(ZE +oz)=M, +m,
where M, and M, include only the moments due to gravity and the transla-
tional inertia of the gyros, the frictional moments, and the moments im-
posed on the housing of the basic gyro by the corrective pendulums.

We consider now the behavior of the gyroscopic device when the ship
moves on a straight course (u=0) at constant velocity V. In this case, as
will be explained below, m, and m, can be taken to be zero. Neglecting for
the present the effect of friction in the bearings of the basic gyro and of the
corrective pendulums (Figure 115), the following equations are obtained:

dz [
H?iz Ply —QGTZv

dy [3
a —-—Plz—Qa—b—y,

(432)

where P is the weight of the gyros; !, the distance from their center of
mass to the gimbals center; Q, the weight of each corrective pendulum;

a, the distance of the latter's center of mass from its pivots; b, the dis-
tance between the pendulum pivots and the pins of the basic-gyro housing
entering into the slot in the angular levers; ¢, the distance between the
gimbals center and the angular levers. The pivots of the two pendulums are
located in the plane containing the gimbals center and perpendicular to the
zZ-axis.

Let the basic gyro deviate to starboard (Figure 118). PointG of the 2§
plane will then move a certain distance z from 0 in the direction of increas-
ing abscissa (Figure 116). It is obvious that z represents at the same time
the angle by which the axis of the basic gyro deviates from the vertical in
the 2z plane. This deviation produces a moment about the y-axis due to
gravity (Figure 118), given by

mom P = — Plz. (433)

The perpendicular to the plane of the stabilized ring moves continuously
with the axis of the basic gyro, and the corrective pendulum, whose pivots
are parallel to the y-axis, will therefore also incline to starboard. A force

z=-°—,':-’- (434)
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acts therefore on the gyro-housing pin located on the side of the negative
y-axis (Figure 118). This force is directed upward and creates a momeént

about the z£-axis equal to
mom,Z =—Qa—§ z. (435)

The remaining terms of the right-hand sides of equations (432) can be
found similarly (Figure 119).

FIGURE 118 FIGURE 119

We introduce the parameters k and p, given by
=% and p=3- (436)

Inserting these parameters into (432) yields
F+ke—pm=0,
o +hy+pr=0.

These equations differ from the similar equations of the preceding section
only by the sign of the terms containing p.

The system of differential equations (437) is equivalent to one linear
homogeneous equation

(437)

8 F(k+1p)z=0 (438)
of the complex variable
s=z+iy. (439)
The solution of (438) is
s= g+, (440)

where %, is a complex number corresponding to the initial position of G on
the £ g plane, According to (440) G moves along a logarithmic spiral (Fig-
ure 120) toward the equilibrium position =0, which determines the verti-
cal position of the basic-gyro axis. In the particular case when the center
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* of .mass of the gyros coincides with the gimbals center (p=0), the logarith-
mic spirals degenerate into straight lines

3=z, (441)

passing through the origin (Figure 121),

The influence of the Coulomb friction on the behavior of this gyroscopic
system will now be taken into account.

Assume that the values of the frictional moments are identical in the
bearings of both gimbals, being equal to F,. The frictional moment in each
bearing of the pendulum suspensions will be denoted by F,. The signs of the
frictional moments in the equations of motion of the system are determined
by the direction of the angular velocities of the stabilized ring relative to
the basic gyro. These angular velocities are caused by the follow-up sys-
tems which constantly align the stabilized-ring axis of symmetry with the
axis of the basic gyro. We denote by § and % the coordinates of the inter-
section C between the axis of symmetry of the stabilized ring and the 2§
plane (Figure 122). The differences

Af=f~—2 and An=n—Yy (442)

represent the errors of the follow-up systems. They are essentially de-
termined by the law of motion of the instrument's body or, which is the

J ]
Zo

z*0

L[

r

FIGURE 120 FIGURE 121

same, of the ship relative to the frame zysz during rolling. Let point K, lo-
cated in the & § plane and having the coordinates @ and B, determine the
position of the instrument's body axis at an arbitrary inclination of the deck.
The differences

a*=a—§ and P*=Pp—1 (443)

represent the angles through which the follow-up systems have tilted the
stabilized ring relative to the instrument's body at the given instant. The
conventional follow-up systems (Chapter VI, § 7) have a so-called velocity
(dynamic) error, which can be expressed for comparatively slow motions
of the instrument's body caused by the ship's rolling, by

Bk=3 3 (e —8), was)

An=s3 B—),

where s is one of the parameters of the follow -up system.
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The values of  and ¥ characterizing the position of the basic-gyro axis °
in the frame xyz vary only slowly incomparison with @ and B, and can, toafirst -
approximation, be considered in (442) and (444) as constant.

Equations (444) will not be analyzed here. We only state that the periodic
variation of & and B must be accompanied by a periodic variation of the er-
rors At and Aq. As a result the velocities of the stabilized ring relative to
the basic gyro will vary in phase with the rolling.

y

e ((£.7)
—e6(z.y) 1

-3
-

y

FIGURE 122

Assume the error At to increase. Then, as can be seen from Figure 123,
the stabilized ring, striving to carry with it the basic gyro and the pendulum,
imposes on the housing of the basic gyro moments

F, and F,:—
about the y-axis.
If the error Ay increases (Figure 124), there appear moments
—F, and —F,—:—

about the Z-axis.
Friction in the suspensions thus leads to the appearance of moments

da
M{=—Fsigng},
_ aat (445)
M;— Fstgn 3,
where
F=F,+Fy . (446)

In addition to the moments due to friction in the suspensions, for A, Ay =0,
the housing of the basic gyro is acted upon by additional moments

AM,=—Qa % At+Qalr by,
(447)

AM,:—Qa—:-An—Qa:’—’-AE;
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" these are due to the additional deviations of the corrective pendulums from
the vertical produced by the tilting of the stabilized ring relative to the
basic gyro (Figures 123 and 124). These moments will, however, be neg-
lected because A and Ay are terms of second and third order and have a
mean value of zero.

FIGURE 123 FIGURE 124

When friction in the suspensions is taken into account, the following
equations are obtained instead of (432):

d dA
Hg = Ply —Qapz—Fsign3L;

d dA (448)
B = _Plz—Qa &y Faign 5t

These can be written in complex form, using (436), as

& +etma=0+mf (G5 (449)

where f is given by the formula

f.-_-———(atgn S taign 23), (450)
Qaf +1P1

The complex magnitude f has four possible values

h—RA+ih+RE 2lh+H)—th—RL (451)
where
FQci
h= 2 . h= —>——,  52)
(0s5) +en? (0s5) +(o?

depending on the sign of the relative angular velocities
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The points 4, B, C, and D corresponding in the £§ plane to the four .
values

aat day dAE  dAy
T @ 1 T
>0 >0 (h—hH+ith+1h
>0 <O h+R—tth—h
<0 <0 —(h—hH)—ith+1h (453)

<0 >0 —(ht+hH+ith—hH

are the corners of a square (Figure 125).

¥
s

Daoawh

fi+hy A(z—‘ﬁ»ﬂ. %—1.\0)
/]
g dAk § da
8(g7>0, <o)
¢
FIGURE 125

The solution of (449) consists of expressions of the form

dAt dA
NPT
where C;y is a complex constant defined by the initial conditions. Depending
on the signs of d—:‘i and %A—'-', (454) corresponds to the motion of point G along

a logarithmic spiral about one of the points 4, B, C, or D. Since these
signs vary during rolling, point G passes from one logarithmic spiral to
another, approaching one of the points 4, B, C, or D (Figure 126).

If the gyros are balanced so that p=0 in accordance with (436), point G,
once inside square ABCD, will remain inside. It will generally undergo a
random motion along lengths of straight lines passing through the corners
of this square (Figure 127).

It follows that if the gyros are mounted together with the pendulums on
a fixed base, a point G located inside the square ABCD will correspond in
the 2§ plane to any arbitrary equilibrium position.

Before analyzing the behavior of the gyroscopic device during manoeu-
vers, we shall find what forces act on the basic gyro due to the additional
gyro. Let 2°)°2® be areference frame fixed to the stabilized ring (Figure 128),
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with the 2°-axis oriented upward, perpendicular to the plane of the ring,

and the pP-axis pointing forward along the pivot axis of gyro's gimbal ring.
The axis of the basic-gyro rotor will then be oriented along the z°-axis if
the errors of the follow -up systems are neglected. We denote by O Op, O,
the projections of the angular velocity of the stabilized ring (or, which is the
same in this case, of the angular velocity of the gyros) on the axes 2° 19, 29,
by Ak the angular momentum of the additional gyro, and by ¢ the angle be-
tween the direction of the rotor axis of the additional gyro and the z°-axis.

y y//‘
4 Zay —y B
\
&/Il b 4 H( z
0
)\\

FIGURE 126 FIGURE 127

The velocity of the vertex of the vector k& [the rate of change of A with

respect to time] consists of the vector g‘i, coinciding in direction with the

vector h, and of a vector determined by the rotation of the frame z%%° re-
lative to which the vector b retains a constant orientation (Figure 129).
The projections of this second vector on the axes 29 % and 8 are

u),qh,. - wph,o: —m,-h sin ’,
Wb — 0k 0 == wph cos P, (455)
II),O’I”! -— w,-h,o = ((n.o sin 1? — m,¢ COS ?) h.

According to the theory of gyroscope precession, the following equa-
tions are true:

—ophsing +% COS §==—mzp,

e hcosq»+:—:sin P=—mgp,
(456)
(weeSin § — wyecOSP) b = —mp,

where mg, myp, mp are the moments which the additional gyro exerts on the

basic gyro, The moment m, is balanced by the moment of the gimbals re-

action. This moment is directed along the z°-axis perpendicular to both

gimbal rings. The moments mg and my are taken up by the basic gyro.

Since the angles between the axes of the system 2%%°® and the corresponding

axes of the zyz system are small, the following approximations are true:
My =X My,

2 m,, (4517)

143



and
0o o, (458) -

where w is the angular velocity of the ship.
Inserting (456), (457), and (458) into (431) we obtain

H(__.u)y>_M +mh§1n1;——0051’;

( —{-wz)._}l{ — whcos§ — sm? (#59)

Expressions for M, and M, during manoeuvers of the ship will now be es-
tablished. This case differs from the preceding in that the gyros and the
corrective pendulums are subjected to translational inertia in addition to
gravity.

FIGURE 128

We assume that the drift angle is zero at the place where the gyroscopic
device is located. In the case of a left turn (w>>0) the following forces will
act along the z- and y-axes (Figure 130):
Py

g dt’
Similar forces will act on the mass of the corrective pendulums (Figure 130).

When these forces, together with gravity and friction, are taken into ac-
count, the moments acting (in addition to m, and m') on the basic gyro are
(cf. pp. 138 and 140)

%mV and (460)

M,= Ply—Qagz——"0—¢ oV 4 ML
0 (461)
M,=—Plz—Qa y——wV+ ALy 74
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Inserting (461) into (459) yields
B[S +hk—+py]=—(0 % +Fcost)—
(0'l ‘V— hsinqo)w-{-
(@ +h++pz |=—(3V+heost)ot (462)

Qa c dV dh

where k and p are given by (436). We subject the angular momentum A of
the additional gyro and the angle § to the following two conditions:

hcos?:—ﬂV:

. . Qac (463)
hsin = ik
Inserting (463) into (462) yields
B[S +he—(o+p)y ] =M,
(464)

ot ky+(o+P)z | =M,

The physical meaning of (463) is that the moments due to translational
inertia are balanced by the gyroscopic moment of the additional-gyro rotor.

Wige
(Wposinp -wyecosp)h

w,.hsw(l)

L
g
Ik
g

FIGURE 129 FIGURE 130
This balancing is particularly simple when no corrective pendulums are

used (Figures 131 and 132), The angle ¢ must then be taken as 180°, i.e.,
the vector h must point to port, perpendicular to the longitudinal axis of the

ship.

The moment of the centrifugal inertia force —~mV>r is balanced by the gyro-
scopic moment whk, and the inertia force %%’- by the reaction of the gyro
* [This should apparently read ﬂuv. which is the Coriolis force. Similar corrections should be applied

to other relevant formulas, ]
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rotor. Also, i 40 ‘
=13 (465)
where I is moment of inertia and @ is the angular velocity of the additional

gyro rotor. Thus -
h=lg=? .

In the general case we have, as follows from (463):

h= % V @y +(Qa -;-)’ .

(466)

and therefore the angle ¢ must be constant, while the angular momentum h
must be proportional to the ship's speed.

lw #g z == Y,

wV

o
|/o
Qv

&l

wh

FIGURE 131 FIGURE 132

Numerical example. Assume that

Pl=5400gcm, Qa%: 4050gcm, V=20 m/sec.

It then follows from (466) that
h==13800gcm sec, tg$=—0.750, ¢ =143°10".

Returning to equations (464), it is obvious that they can be written in a
complex form, exactly as (448):
d dAE dA
FHE+ie+oN=k+) (G, ).
where f is a complex magnitude defined by (450) and depending on the signs
of the rates of change of the error angles in the follow-up systems. In the
particular case w=0, (467) becomes (449). In the general case w=40, its
solution is similar to (454):
— k4ip dAE  dAy
= Etilptene .~ °F (-8 201
2=Cpet +k+l(p+u)f(dt . dt)‘
In this case point G, which defines the position of the basic-gyro axis,
moves along logarithmic spirals, approaching one of the points

__ k+ip dAE  dAy
‘= irreae! (G T (469)

(467)

(468)
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depending on the sign of the derivatives ‘-’;‘—E and 5:% These points define a

square, just as points 4, B, C, D in Figure 125. The sides of this square
are rotated relative to the sides of the square ABCD. The lengths of the
gides of these squares are in the ratio

Ll K+ p2
=V wo

The dimensions of the squares characterize to a certain extent the in-
strument error due to friction in the suspension.

It follows from (470) that the most unfavorable case will be that of a right
turn at an angular velocity w=—w®*, where;

ot=—p. @71)
If k=0.01 sec”! and p=0.0075 sec~!:

Jlf,‘_:=1.25. ©* = —0.0075 sec 1.

These values correspond to a turning radius equal to 2670 m at V= 20m/sec.
The order of the instrument error during an ordinary turn in the case of
drift will now be found. In this case (Figure 133), %—:0 must be substi-

tuted in (462) and the factor cos3 added to all terms containing the ship's
speed. In addition, the terms

— Pl Vsind and 0—.--‘-0"8“13
z € ?

must be added to the right-hand sides, respectively, of the first and second of
equations (462), Assuming the drift angle 3 to be sufficiently small, the fol-
lowing approximations are valid: cos 3=1, sin 32£38. Taking into account
(463), the following system of two differential equations is finally obtained
[neglecting friction]

B[ the—(+py|=—2roV%
dy Quc (472)
H[‘—‘+ky+(m+p)z]= % .ya.

Usingthe complex variable s==z-}-ly, this system is equivalent to one
equation

d | 4
7 FlEtie+pls=i(k+ip)=- 3. (473)
For any initial conditions, the solution of this equation tends to the
limit
o dlkttp) eV
?* = Fie+h 88. (474)

The modulus 8 of the complex number z* characterizes the order of magnitude
of the instrument error caused by the ship's drift during an ordinary turn.
It follows from (474) that

_'/ BIp eV
=) exer T @7%)
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Let k=0.001 sec-!, p=0.0075 sec~!, @=—-0.01 sec™!, $=12° and V="
=20 m/sec.
Inserting these values into (475) yields

$=0.0056 (19).
For an opposite turn
8=0.0029 (10).
The large values which are sometimes obtained for & make it necessary

to find means to reduce the instrument errors caused by the drift angle.
One method was described in § 2 of this chapter.

P

g.— wVsind 7 Ycos8

FIGURE 133

We shall not analyze the instrument errors during rolling, the errors
caused by inaccuracies in manufacture, or malfunctioning of the follow-
up systems (in particular errors in the log indication). Such an analysis
is not difficult in the general case and should be conducted for each new
instrument design.

§ 4. Theory of the gyroscopic heel equalizer

The preceding two sections of this chapter dealt with the mechanics of
measuring gyroscopic systems (systems which do not influence the orienta-
tion of the moving object). Such systems determine the orientation of the
moving object at any instant, and transmit this information to other devices
by means of follow-up systems.

Gyroscopic systems of a different type also exist. Their function is the
complete or partial stabilization of the moving object (e.g., the rolling
stabilizer and the monorail car) during its rotations about a specified re-
ference frame.

Contemporary systems (in contrast to those mentioned above) use the
gyros not as stabilizers, but as control elements for rudders, fins or other
components of the moving object. These latter stabilize the object by turn-
ing it in the required direction.
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~ The complete system of differential equations describing the operation
of such a device must include, in addition to the equations of motion of the
gyros, also the equations of motion of the object itself, the equations of
motion of the rudders, and in many cases the equations describing the
functioning of additional devices (amplifiers, transformers, etc) whose
function is to ensure the stability of the system as a whole.

In many cases, however, the complete system of differential equations
can be separated into two independent subsystems. In fact, the orientation
of the gyros can be considered as constant when studying transient proces-
ses and the stability of the object's motion, because of the small angular
velocities with which the gyros vary their orientation. Similarly, the ob-
ject's lag during transient processes (connected with the variation of its
orientation caused by the gyros) can be neglected when studying the gyros
motion, since the rate at which these variations proceed are incomparably
higher than that of the gyros' motion. Thus the motion of the object, of the
rudders, and of the additional devices appear in the equations of motion of
the gyro system in the form of servomotor constraints. This procedure will
be adopted when analyzing the gyroscopic heel equalizer. The function of
this device is to reduce the moving object's heel to a minimum by acting on
its control system (Figure 134).

FIGURE 134

The error angle between the plane of the gyro's outer gimbal ring and
the object's plane of symmetry will be assumed to be zero (the transient
processes occurring during the reduction of this angle to zero are ignored).

In its mean (initial) position the gyro rotor (Figure 134) rotates in the
symmetry plane of the moving object in such a way that the velocity of its
upper points is directed along the object's motion,

The outer gimbal-ring pivot axis 2, lies in the plane of symmetry in-
clined toward the side opposed to the object's motion, forming an angle

';‘—T with the longitudinal axis of the object.

In the initial position the plane of the outer gimbal ring coincides with
the plane of symmetry of the moving object. When the outer ring is tilted
through an angle & relative to its initial position, the control system forces
the object to rotate so as to reduce this angle.
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In the initial position the plane of the inner gimbal ring is perpendicular
to the plane of the outer ring. When the inner ring is tilted through an
angle B from its initial position, a correcting moment K (B) is applied to the
outer ring, which causes a precession of the gyro, tending to reduce the
angle B. In particular, this moment can be created by the reaction of air
jets discharged from the body of the outer ring impinging on dampers suit-
ably arranged on the inner gimbal ring. If the angle B is small, K (B) can
be considered as a linear function:

K@) =5, (476)
where k is a constant.

The linear relationship (476) does not apply when the angle B becomes
large.

Assume in the nonlinear case that the curve of the function K (B) is of
the form represented in Figure 135, The problem does not become too
complicated because of this nonlinearity and will be dealt with in this sec-
tion together with the case of a linear function KX (B).

K(p)
K-

-
=

FIGURE 135

The cases of more complex forms of the function K (B), leading to dif-
ferent types of motion of the gyroscopic systems, are discussed later
(Chapter V, §1).

The inner gimbal ring of the heel equalizer's gyro rotor is connected
rigidly with a weight P (Figure 134). The center of gravity of the weight P
lies in the rotor's plane of rotation. It is located at a distance b from the
pivot axis of the outer ring axis and at a distance ¢ from that of the inner
ring. It will be shown later that when the instrument is correctly adjusted
the distances b and ¢ must be connected by the following relationship:

b=ctgy. (477)

This also means that the geometric center of the gimbals and the center
of gravity of the weight lie on the same vertical, provided, obviously, that
the longitudinal axis of the moving object is horizontal and that the heel is
zero.

The friction in the gimbals axles will be neglected; this assumption is
admissible for this type of device.

When the object turns, its various points have different velocities whose
directions in general do not coincide with the longitudinal axis of the object.
It will be assumed that there is no drift, so that the direction of the linear
velocity of the point where the heel equalizer is located is along the axis of
the moving object whenever the latter turns., The Earth's rotation will also
be neglected.

|
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The equations describing the motion of the heel equalizer will now be
established. The following five Cartesian frames, with origins at the gim-
bals center, will be adopted:

1. The coordinate system §*7%°® (Figure 136). The {%-axis is directed
vertically upward, and the n’-axis is parallel to the longitudinal axis of the
object and directed toward the side opposed to the object’'s motion (the ob-
ject's trim is assumed to be zero). This coordinate system is carried
by the moving object. Its angular velocity relative to the Earth is equal to
the angular velocity o of the object, the vector being directed along the
(-axis.

It will be assumed that >0 if the object turns to the left (counterclock-
wise when observed from above).

The rotation of the object causes the centrifugal force —:—.V to act; for

@ > 0it acts onthe weight P in the negative direction of the §*-axis.

{-0
- v qD
P4 s g
w,/
p‘ Euf
FIGURE 136 FIGURE 137

The object's velocity varies during its maneuvers. The inertia force
of the weight !‘Q % is directed along the negative 7°-axis. It will be as-
sumed that the effect of this force on the heel equalizer is small and can
be neglected.

2. The coordinate system §mg, fixed to the moving object (Figure 137).
The m,-axis coincides with the %*-axis and is therefore parallel to the longi-
tudinal axis of the object. The { -axis lies in its plane of symmetry.

The angle b between the axes {, and {° is the heel angle of the object.
For 0> 0 the object has a heel to port*,

The direction cosines of the system ¢, relative to the system &4%*

are:
g ® ¢
& cosd 0 —sinb
T 0 1 0 (478)
G sin 0 0 cos @

® This is in contrast to Chapter 1I, §1. There the heel to starboard was considered as positive.
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The angular velocity vector of the object's heel is directed along the
de
7*-axis and is equal to 4.

3. It is convenient to introduce the coordinate system §yC (Figure 138),
also fixed to the object. The E-axis of this system coincides with the §-
axis. The {-axis deviates from the {,-axis toward the side opposed to the
object's motion by the constant angle 1 and coincides with the pivot axis z, of
the gyro's outer gimbal ring (cf. below).

The direction cosines of the system {7t relative to the system §mn, are:

£ L G
3 1 0 0 (479)
7 0 cosy —siny

C 0 siny cosy

From (478) and (479), the direction cosines of the system §*4%° relative
to the system gv{ are:

3 7 4
£° cosd —sinysin® cosysin®
LY 0 cos Y siny (480)
©® —sin0 —sinycos® cosycosd

4, The system z,,2, fixed to the outer gimbal ring (Figure 139). The
2,-axis is directed along the pivot axis of the outer gimbal ring and coin-
cides with the {-axis, The y;-axis has the same direction as the y-axis
(cf. below).

FIGURE 138 FIGURE 139

The angle of rotation about the 2,-axis of the coordinate system z,y,2; re-
lative to the coordinate system {7 is denoted by a. This angle & thus de-
fines the position of the outer gimbal ring relative to the instrument body.
For 2 >0, the outer ring is rotated counterclockwise if viewed from above.
The vector of the angular velocity of the outer ring relative to the body has

the direction of the axis {(z;) and is equal to %
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" Fora=0, the outer ring lies in the plane of symmetry of the moving
object, and the coordinate systems z,y;%; and £3 coincide. In the general
case (a»&k0), the cosines of the two systems are related as follows:

3 L] 4
z, cosa  sina 0
Vi —sine cosz 0 (481)
3 0 0 1

5. Finally, we introduce the coordinate system zyz fixed to the inner
gimbal ring (Figure 139). The y-axis, which coincides with the y,-axis,
is directed along the pivot axis of the inner ring. The z-axis is directed
along the axis of ro:ation of the gyro rotor,

In the initial position the plane of the inner ring is perpendicular to the
plane of the outer ring, and the zyz and z,¥,3, coordinate systems coincide.
In the general case, the inner ring tilts through an angle B from its initial
position. The angle B is positive for counterclockwise tilting of the inner
ring about the axis y(y,) (if viewed from the positive y-axis).

The vector of the angular velocity of the inner relative to the outer ring

is directed along the y-axis and is equal to %@

de’
The direction cosines of the system zys relative to the system zy,8; are:
n h 5
z cos § 0 —sin B
y 0 | 0 (482)

3 sin B 0 cos B

The direction cosines of the system zys relative to the system §y can
now be obtained from (481) and (482):

£ 3 ¢
z cosacosP sinacosP —sin P
y —sine cose o (483)
s cosasinp sinesinf cos B

It is important to know the direction cosines of the system zyz relative
to the system §%%° these are found from (480) and (483):

e 'q' J
z cosa cosf cosd — sina cos B co8 Y— —ocose cosf sind—

—sina cosp siny sind — —sinp siny --sina cosP siny cosd—

— sinf cos ¢ sind —sinf cosy cos
y —sina cosd — cosa o8 7 sine sinf® —

—cosa siny sind —cose sin y cos0 (484)
3 cos« sinf cos0 — sin « sin f cos Y- —cosa sinP sin0—

— gina sinp sinysin¥4 +-cosP siny —sinasin siny cos0+4-

4 cosB cost sinl +cosP cosy cos®

When the rotor rotates as assumed above (the velocities of its upper
points are directed along the object's motion), the vector of the gyro rotor's
angular momentum H is directed along the positive z-axis (Figures 139 and
140),
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The coordinates of the center of gravity of the weight P attached to the
inner gimbal ring are, in the zys system (Figure 140):

z=0; y=b s=-—c. (485)

In accordance with the theory of gyroscope precession, the equations of
motion of the heel-equalizer gyro will be formed by using the theorem on
the angular momentum of a system (§ 1 of this chapter).

Wedenoteby p, ¢, and r the projections of the angular velocity of the frame
zyz relative to the Earth, Neglecting the angular velocity of the Earth, and
taking into account that the vector H, of constant magnitude, is invariably
directed along the Z-axis, the following expressions are obtained for the
projections on the axes Z, ¥, and z of the velocity of its end point [the com-
ponents of the time derivative of H] (Figure 140):

M= O
M,= rH; (486)
M.,—=—qH.

In accordance with the angular momentum theorem, the magnitudes
M, M,, and M, represent here the sums of all the moments about the axes
z, ¥, and 2z acting on the gyro rotor.

FIGURE 140

The angular velocity of the zyz frame is the vector sum of the angular

velocities e, %:—, %%, and %g- directed along the axes (% 7% {, and y re-

spectively (cf. Figures 136, 137, and 139).
From (483) and (484), the following expressions are obtained for the
projections ¢ and r:
. . 40 dp
g==u (sin 2 sin § — cos a sin y cos §) 4- ‘—‘cosacon-i-m-,

r —o(—cosasinBsin0—sinasinBsinycos8-}-cospcosycost) 4  (487)

+:—:(sinusinpcos1+ cosBsinT)-l-%cosﬂ.
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. The angles g, B, and @ will be assumed to be small. Neglecting all
terms of higher order than the first in these small magnitudes, (487) be-
comes

d0 8
q=—osin1+-;?°°9't+-g.

r—OOOST+ sin1+ (488)
Equations (486) can therefore be written in the form
o0=M,
H(mcos'r-{—d‘ sm1+— =M, (489)

‘—H(—msin 7+Fcos~;+7§-)=M,.

The forces acting on the gyro rotor of the heel equalizer that create the
moments M,, M, M, consist of the normal reactions of the bearings on
the inner gimbal ring, the effect of friction in these bearings and of the
rotor in the surrounding air, and the forces caused by the blasts from the
nozzles, which tilt the rotor relative to the inner gimbal ring.

The moment M, is zero at constant angular velocity of the rotor. It
follows that the sum of moments about the z-axis due to friction in the bear-
ings of the rotor shaft, the air blast driving the rotor, and the aerodynamic
resistance to its rotation is zero.

The normal reactions of the bearings create the moments M, and M,,
which have to be determined.

Consider now the forces applied to the inner gimbal ring. These forces
must balance each cther, since the inertia of the mass of the two gimbal
rings is not taken into account in the theory of gyroscope precession.

FIGURE 141

The forces and moments which must be taken into account are the normal
pressure of the rotor on the bearings in the inner ring which causes mo-
ments —-M, and - M,, the moments due to gravity acting on the weight p
secured to the inner gimbal ring, the moments due to the centrifugal
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force —:— oV acting on this weight during rotation, and the moments due to - )

the reactions M/, M, M, of the bearings in the outer gimbal ring (Figure
141). The moments due to the reactions of the air jets, the moments caused
by friction during the rotations of the rotor in its bearings, and those due to
the effect on the inner gimbal ring of the surrounding air that is caused to
circulate by the gyro rotor, all act about the z-axis (the rotor axis). The
resultant moment -M‘ is generally not zero, since the rotor and the inner
gimbal ring are not enclosed in an air-tight casing, so that not all braking
forces acting on the rotor originate in the inner gimbal ring.

It follows that the moment -M? should be considered as negative, its
vector pointing in a direction opposed to that of the angular momentum H
(or, which in the same, opposed to that of the rotor's rotational velocity).

The following equilibrium equations of the inner ring are thus obtained:

—M + M, +mom, P+ mom, £V =0;

—M _+ M +mom P+ mom, -‘—0V=0;
—M,+4 M+ mom P +-mom, 7¢V =0.

(490)

If the moment due to the friction between the inner-ring pivot and the

bearings onthe outer ring is neglected, then
H;=0. (491)

If the moment of inertia of the outer ring referred to its axis of rotation
% (0) is neglected, all the forces acting on it are in equilibrium. It follows
that the sum of all the moments about the z,-axis acting on the outer gimbal
ring must be zero.

If friction in the bearings of the outer-ring pivots is neglected, the mo-
ments about the outer-ring pivot axis (Figure 142) are due to the action of

ﬁ't
k3
W
g3
Ws
4 p
g
FIGURE 142 FIGURE 143

the inner on the outer ring and to the correcting moment K (B) (see below).
The former are the moments —M_, and ~M;. The sum of the projections of
these moments on the 3-axis is (Figure 143):

M’ sinB— M_cosp.
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;_I‘herefore

K@)+ M, sinB— M cosp=0, (492)
whence
M;:M'.tgp-}-%(?- (493)

or, by the first of equations (490)
M'=(M‘--mom P — mom -f-wV)tgP-i-K(p). (494)
s s . s g m

Inserting (491) into the second, and (494) into the third of equations
(490) yields

M,=mom,P - mom, % oV,
M,=mom,P+mom,-; oV + (495)
+ (M3 —mom P —mom, £ oV )tg8+ L.
Inserting (495) into the second and third of equations (489)
H(m cos 7—{——:% siny 4 :—:)=mom,P+mom,—:—mV;
-—-H(—msin 1+ g:—cos1+%‘p—)=mom,P+mom,-:—wV—l— (4986)

+ (M: —mom.P—mom‘% mV) tgﬂ+:—&(%)-.

The moments about the axes z, y, and 2z due to gravity and the centri-
fugal force are:
mom P = yP,—3P,;
mom,P = 2P, —zP,;

mom,P =zP,—yP,;
mom, (£ o¥) =y (.7),—s(5. ),
mam, (2o )=s(2- ), =2 (5-7),

mom, (% oV)==z (% mV)y —y (% OV)..

The coordinates £, y, and z of the center of gravity of the weight P,
are given by (485).
The force P is directed along the negative {%-axis, and the centrifugal

inertia force -:i wV along the negative g-axis.

From (484) the projections of these forces on the axes z, y, and z are:

P, —=—P (—cosacosPsin0— sina cos B sin ycos § —

— sin P cos y cos 6);
P, = —P (sin a sin 6 — cos a sin y cosd); (498)
P, = —P(—cosasinPsin®—sinasinpPsinycost-}

- cos B cos 7 cos 6);
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p =_2 -
(—; wV).— ‘ oV (cosa cosBcos®
— sin a cos B sin y sin 8 — sin B cos y sin §);
oV (—sin « cos § — cos a sin 7 sin 6);
oV (cosasin P cosd —

- sin a sin P sin ysin 0 + cos B cos 7 sin 8).
If the angles @, B, and 8 are small,
P,=P(0+asin7-+Pcosy)
P,=Psiny,
P,—=—PcosT,

&)=t
(_:_ ..,v)'=-:;mv (+0sin7),
(3 o¥) == For v

Inserting (499) and (485) into (497), we obtain

mom P = (—b cos 1+ csin 1) P,
mom, P=—c(0-}asiny-}Pcosy) P,
mom,P = —b (8 4 asin 7B cos) P,

mom,-%mV=[—b@+0cos1)+c(¢+0sin1)]—:-'-ol’,
mom,%nV:c %-V.
mom, £ oV =b L aV.
[ 4 [
Inserting (500) into (496):
H(mcos-;-{-%;- siny-}-%"—):
=—c(0+¢sm1+Bcos1)P+c%wV,
-—-II(—wsin 1+:—:cos-‘-{-:—f):-b(e—}-asin'f-{—ﬁcos-r)l’-}-
+b%mV+{M:—(—bcos1+csin1)P—
—[—b(@+8cos ) +c(a+0sinp)) - oF }tg B+ 5

(498)

(499)

(500)

(501)

Neglecting all terms of higher order than the first in a, B, 0, this be-

comes

H(%:—sin-;-{--:—: =—c(0-}asiny}-Bcos) P+
+c%oV—-Hocos1.
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B(Zcost+ ) =b(0 + asinp) 4 Bsiny] P —
-—b%—mV+Hosin1—M:B—K(P). (502)

This is a system of two differential equations with three unknown func-
tions of time: 0, &, and B. A third equation is given by the rotation of the
object about its longitudinal axis:

13=—D9 M), (503)
where I is the moment of inertia of the object about its longitudinal axis,
D-g% is the moment due to resistance of the medium to the object's rota-
tion (assumed to be proportional to the rate of variation of the heel angle
%), and M (a) is the heel-equalizing moment applied to the object by the

control system.

Strictly speaking, the moment M (1) is connected with the angle & (the
angle between the plane of the outer ring and the object's plane of sym-
metry) by a more complex relationship; this allows for the action of the
control system.

In accordance with the discussion at the beginning of this section, equa-
tion (503) will be replaced by the simplified approximate condition of servo-
motor constraints:

a=0. (504)

The physical meaning of (504) is that the object assumes instantaneously
the heel specified by the heel equalizer. The motion of the heel-equalizer
gyro system is obviously incomparably slower than the rotation of the ob-
ject about its longitudinal axis.

Inserting (504) into (502) yields

H 43 siny=—c (8 cos 1) P+ TV —Hoou)e,
B( g cos 1-+g) =0+ sin) P— (505)
—(b-“l V—Hsintjo—MB—K ()

The terms containing the angular velocity @ represent the perturbation
forces acting on the heel equalizer when the moving object turns. They
are zero when the following two conditions are simultaneously satisfied:

c%V:Hcoq, b%V=Hslnr (506)
or
;=°37'V (507)
gcos Y

It is easily seen that this method of eliminating the influence of turning
is similar to the methods employed in §§ 2 and 3 of this chapter.

The first of conditions (507) is identical with (477), and means that the
center of gravity of weight P should be on the same vertical as the gimbals
center when heel and trim of the moving object are zero.
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The second of conditions (507) means that the angular momentum H of
the gyro must be proportional to the linear velocity of the object V. Since
the linear velocity of the object varies during turns, the second of condi-
tions (507) can be satisfied only approximately, a mean value of the linear
velocity being assumed.

When conditions (507) are satisfied, (505) becomes:

an .
H—psiny= —cP(8+4Bcosy),

(508)
H(—::—cosr+$—§)=cp(0+ﬂcw1)t8 1— M- K@)

In addition, M$B can be neglected since its magnitude is considerably
less than that of the correcting moment K (8).

The case when B is small will be examined first, and expression (476)
for K (8) will be assumed to be valid. The following equations are then
obtained:

Aeing &8 — —(04Beosy),

cP dt
H (adb k (509)
 (S-cost+ o )=0+Beosn) tgT— 5 B-
To simplify (509), we introduce the dimensionless time
cP
Then
40 __dé dt __cP  db g _ P 4P 5
ar = dv at — Hsmy dv ' f — Hsing dv * (511)
Inserting (511) into (509) gives
do
g = —(0+Bcosy),
do dp sin? k sin (512)
v cos {4 5= = (84 Beos) S —=251B.

We multiply the first of equations (512) by coesy and add it to the second,

d 1 k si
75‘=c—o.7(°+?°°”)" B (513)
and define a new variable
¢=Bcosy. (514)

The differential equations (512) then become:

d0

- =—0+9)
d (515)
%=e+?—"?v
where
__ksiny
=—Z- (516)
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System (515) is equivalent to the second-order differential equation

an de

33 +z—z;-+xo=0. (517)
which is obtained by eliminating the variable ¢ from the second of equations
(515) by means of the substitution

= — —:%+°). (518)

obtained from the first of equations (515).
The general solution of equation (517) is

b=c (o,cosw-lr--—'—*'ﬁsin ) (519)

’ 4
Here @, and 8, are the values of § and - for (z=0) and

= Vi E—2). (520)
We assume that the inner and outer gimbal rings are freed from the locking

device at the instant the heel-equalizer gyro is started, i.e., that
0,74 0, gy=PBycos7=0, (521)

where 8, is the heel of the moving object at t=0.
Thus, from the first of equations (515),

0= —89,, (522)
and (519) becomes
0=0,e-7‘(cosw-|-1-_§:—z-slnw). (523)
From (518) we obtain
g=Ppcosy=0¢ T 'i':". (524)

If x< 4, the parameter v is real in accordance with (520), In this case
(523) and (524) determine the motion of a point § along a spiral approaching
the origin of the @0 plane asymptotically (Figure 144),

The time derivatives of ¢ and 8 are obtained from (515) or by direct dif-
ferentiation of (523) and (524):

-—=0,e-"§"(cosw— —z—‘;sinn);
(525)
d: = -—O,e—%'(cosw-}-%sinn) .

The instants at which ¢ and # have maximum magnitudes are obtained
by equating the corresponding derivatives to zero. ¢, and thus the angle B,
is a maximum at instants 1, which are roots of the equation

2v
tgﬂ,:—;-. (526)

The heel angle # is a maximum at instants v, which satisfy the equation

Cgvg=— 2, (527)
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Each successive maximum of the magnitude of 8 (and also of @) is less than .
the preceding one by a factor N, where N is given by

N=e?>. (528)

The dimensionless time interval between successive maxima is

= . (529)
The corresponding time interval is, by (510),
ty= 5—:—,’32 %y (530)
g
b,

FIGURE 144

Numerical example. Assume that H= 6420 gcmsec, P=495 g,
¢=3.7 cm, Y =48°, k=3440 gcm, 6= 0.209 (12°) and ¢y=0. By (510), (514),
(516), (520), and (528)—(530);

t— H'in71=2.601:sec; ?=pcm1=Q669P;

cP
x=250T_1.400; v=p Vx(G—x)=0.954;

L
‘t'=——:— =3.29(8 55 sec); N=e?® =997.

The heel angle decreases to about one tenth during 8.55 sec, while the
angle B, which is proportional to ¢, becomes again zero.
Equations (526) and (527) yield in this case

tgw,:%—:i.&m and tgvry= ——%: —1.383.

Their least roots are

v, ==0.984(2.56 sec), <,=2.31(6.00sec).

¢ is a maximum at t=<x,. The value of this maximum is, by (524),
¢,=0.4236,=0.0885 and pl=72—1 =0.1320(7°33).

The corresponding value of the heel angle 8, is found from (523) or from
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the second differential equation (515)
6,=0.1696,=0.0353 (2°1).

If t==x,, the heel angle 0 is a minimum, its magnitude being a maximum,
The corresponding values of 8 and ¢ are, by (523) and (524),

8p=—0.169 6, = — 0.0353 (2°.1'); g, ==0.1698,= 0.0353 =8,
The variation of 8 and ¢ is shown in Figures 145 and 146.
&
02 4

o1} arr

7 A S R P 7 (7 T

FIGURE 145 FIGURE 146

In the general case, for arbitrary initial values § =8, and ¢ =g, at
t==0, the solution of equations (515) is
(p=e-7‘[ %cosw—-gﬂg:ﬁsinn],
. e (531)
°=c-?‘[0.cosw+u%—zﬂsinnJ.

In this case the motion of point § on the ¢0 plane has the same spiral
pattern as in the motion described by (523) and (524).

If x> 4, the value of v is imaginary in accordance with (520). The tri-
gonometric functions in formulas (531) must in this case be replaced by
hyperbolic functions:

?=Q_T‘ [?ochpt_ g‘—-.—g).fp,d._shpt].

. D (532)
0=e T° [0,0]: pt-{-(—z);;;ﬁshpt] '

where the parameter p is given by
p=g Vi—A). (533)

The trajectories of the point § corresponding to (5632) are shown in
Figure 147. In each of them the point § approaches the origin asymptoti-
cally. All trajectories are tangential to the straight line

0=19, N=F—14 5 VEG—A), (534)

which is itself a trajectory.
The only exception is the straight line (Figure 147);

0=19, =g —1 -2 i E—4), (535)
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This follows directly by analyzing the differential equation
9 L ] (536)

ELE T S T
which can be derived from the system of equations (515). Equation (536)
has a particular form of an equation studied in the theory of differential
equations (case of a mode). Theslopes of the straight lines (534) and (535)
are roots of the equation

M4 @2—nr4-1=0. (537)

The equations of motion of the gyroscopic heel equalizer will now be
solved for the case when the function K (B) has the form of a broken line

(see Figure 135).
\9
g=2,p

"\,\ bep

\

FIGURE 147

In this case by neglecting again the term M} incomparison with the cor-
rective moment K (B) in (508) and by carrying out similar transformations,
we obtain the following equations instead of (515):

@ = —(°+?)o
4 (538)
=0+ —m(e)
where m(p) is a function related to K (§) by the relationship:
m(g)= A;g’ cosysinTy, p=BcosT. (539)

The curve of m(g) differs only in scale from the curve of K(p) (Figure 135).

Let the initial conditions be go==0 and 8, >0, as before. The motion of
the heel equalizer will in this case be described at the beginning by the
same linear differential equations (515). The solution of these equations
is given by (523) and (524).

When ¢ exceeds ¢*, the function m(p) becomes constant and equal tom in
accordance with Figure 148, When this happens, the ensuing variations
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"of ¢ and 8 are described by the equations
dé
G =—04+9)

d
=0+p—m,

(540)

the initial values being p=—=¢%, 6==0®. The symbol §* denotes the magnitude
of § at the instant at which ¢ attains the value ¢® inaccordance with formula
(524). The following inequality must be satisfied at this moment:

%:—=°'+?‘—'9‘>°- (xe*=m), (541)
since otherwise ¢ will decrease after this instant, as can easily be shown,
and the differential equations (515) will remain valid.

In fact, for p=¢®*, let
S —=0. (542)
&

The subsequent variation of ¢ is then determined by its second derivative.

m(p)

FIGURE 148

By the second equation (515):

b=+ -1 (543)

Inserting (543) into the first of equations (515) gives:

%= -—xj‘!——-up. (544)

Since :—::0 and p=¢9* >0 by hypothesis, it follows that

2 <o, (545)

which means that ¢ will decrease,

Let inequality (541) be satisfied, so that equations (540) apply. A general
solution for any initial conditions of ¢ and # is easily obtained. In fact, ad-
ding both of equations (540) yields

o+ 1‘{-= —m, (546)
whence
0} ¢= —mr 4 const. (547)

We define another zero time so that p=¢*, and 8=0* for t==0. The
constant in (547) can be found from these initial conditions, and (547)
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becomes

0+ o= —mr| 0%+ p*. (548)
From the first of equations (540) it follows that
_:%__:mg__(oo +9*), (549)
which after integration yields
0= "5 — (0% 4 ¢*) *+ const. (550)

The constant is again found from the initial condition §=20% for t=0. Equa-
tions (550) and (548) can then be written in the form

0= — (0% 4 9%t 0%,
(551)

p=—22 4O +e*—m)tte

It is easily seen (cf. Chapter V, §1) that equations (551) correspond to a
motion of the point § along a parabola in the ¢0 phase plane.
Differentiating the second of equations (551) gives:

—:-‘!=—mt+0‘+?"—m. (552)
This derivative is zero at the instant
-:,=..+:—', (5653)
at which ¢ attains its maximum
v;=£,—,(°‘+v‘—"')’+?‘- (554)
At this instant the heel angle 8 is
o=T— el 2 S (555)
The derivative -:% in (549) is zero at the instant
= g_%g , (556)

at which the angle 8 attains its extremum

1
b= — o (0* +o°P 0% (557)
as follows from (551) and (556). The corresponding value of ¢ is
i
9,:—-0’ =3 (0‘.'_70)2_00. (558)

It follows from inequality (541) and the second of equations (551) that ¢
increases at the beginning (for small values of ¢). It then decreases again
2
because of the term —-2%-. By inserting ¢ =¢®* into the second of equations

(551) the following yuadratic equation is obtained:

— 5 (00 9 —m)s =0, (539)
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f'I'he first root of this equation is t=0; this gives the instant at which ¢ and
® begin to vary according to the differential equations (540); the second
root is

=g 0" +9*—m) (560)

which gives the instant after which the system of differential equations
(540) no longer applies. We must then return to the system of differential
equations (515) with suitably altered initial conditions, one of which is
¢=¢*. In order to find the initial condition for 0, (560) must be substi-
tuted into the first of equations (551); this yields

0=0,=2m —0* — 2¢*, (561)
The following substitutions must therefore be made in (531):
0,=90, and p,=¢*. (562)

A new time must also be chosen, and the variation of ¢ must again be found,
since (531) is valid only for

lel<9® (563)

If ¢ attains the value —¢®*, then, in accordance with (538) and the curve
of m(p) (Figure 148), the system of differential equations

dé
d 564
Z=0+¢+m (564)

must be solved under suitable initial conditions in order to find ¢ and 0.
It can be shown by carrying out the same operations as were used when
(551) was derived that the solution of (564) is

0= — 22 ()-8,
v="5 + -+ ¢+ mr+,

where ¢*= — ¢* and ® are the initial values of ¢ and §; the time ¢ is mea-
sured from a new zero,

Equations (565) describe parabolic trajectories of the points § in the ¢f
plane.

They are valid as long as ¢ does not again become equal to —¢*; after
this equations (515) must be reapplied.

Numerical example. As in the preceding example (cf. p. 162) we
assume that

(565)

x==1.400; v=0.954; 1=48% t=2.6x,

and let the initial heel of the object be 8,=0.209 (12°) and the initial angle
of deviation of the inner gimbal ring from its mean position ¢,=0. We also
assume that ¢*= 0.0585. This corresponds to §* =5 (Figure 135), and

m = xp*=0.0819.
For 0<9<{0.0585, ¢ and 8 will vary according to (523) and (524).
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The following numerical values are obtained:

L3 ? 0
0.00 0.0000 0.209
0.10 0.0185 0.188
0.20 0.0383 0.168
0.3 0.0500 0.147
0.37 0.0585 0.134

The system of differential equations (515) is valid for 0 <* < 0.37 (0.96 sec)
after which system (540) applies. The initial conditions are
¢*=0.0585, 6*=0.134.

Formulas (551) then give 8 and ¢. The dimensionless time t is measured
from a new zero.
Applying (551) the following values are obtained:

L3 [ ] [
0.0 0 0585 0.1434
04 0.0962 0.063
0.8 0.1208 0.006

1.2 0.1322 —0.038
1.6 0.1307 —0.069
2.0 0.1159 —0.087
2.4 0.0880 —0.082
2.7 0.0585 —0.087

According to (553) ¢ attains its maximum at the instant
1,=1.35(3.5 sec)
when, by (554),
9, =0.1334.
The maximum deviation of the inner gimbal ring from its mean position is

&:%:0.1995 (11°26")

According to (556), the magnitude of heel 8 will be a maximum at the
instant
1, =2.35 (6.12sec)

when, by (5657):
6= — 0.093 (5°20")

To check, we determine by (560) the instant at which ¢ again becomes
equal to ¢*. This happens at

<, =2.70 (7.02 sec).
The corresponding value of 8 is found from (561):

o, = —0.0874 (5°07).

The subsequent calculations of ¢ and # must again be done by applying
(515), taking as initial values in (531)

¢=0.0585, 6= —0.0874.
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: The values obtained for ¢ and 0 are as follows:

< ¥ 8
0.0 0.0585 —0.0874
0.4 0.0204 —0.0708

0.8 —0.0047 —~0.0495
1.2 —0.0183 —0.0289

1.6 —0.0230 —0.0123
2.0 ~0.0218 —0.0008
2.4 —0.0174 0.0060
2.8 —0.0120 0.0088
3.2 —0.0069 0.0090
3.29 —0.0059 0.0087

In this case ¢ does not attain the value —g*, Therefore (531) remains
valid for subsequent values of the dimensionless time. The trajectory cor-
responding to the values of 8 and ¢ as given by these three tables is shown
in Figure 149,

0z

ar

Pati
<

————— - = e - e - -
U ) S,

FIGURE 149

Point A(0.000, 0.209) of this curve corresponds to the initial instant
+=0. Point B(0.0585, 0.134) corresponds to t*=0.37 (0.96 sec). Point
€ (0.0585, -0.874) corresponds to

* + 1, =3.07 (7.99sec).
Lastly, point D(-0.0059, 0.0087) corresponds to
* J- 1, 1==6.36 (16.5sec).

The study of the heel-equalizer motion in the case when the function K (B)
has a more complex pattern is deferred to Chapter V, §1, as mentioned
at the beginning of this section.

§ 5. The gyroscopic frame

The gyroscopic frame with two gyros (Figure 150) is the basic element
of many modern gyroscopic devices with so-called power stabilization.
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In power stabilization the resistance to rotation of the sensing elements
of the transmitting devices and the friction in the kinematic chains are ’
directly taken up by the outer gimbal rings of the gyros. The correspond-
ing moments cause the precession of the gyro to one or the other side from
the initial position, this being the position at which the gyro rotor axis is
perpendicular to the plane of the outer gimbal ring.

The stabilizing properties of the gyro decrease with increasing angle of
deviation of the gyro housing from its initial position, until they vanish
when the angle of deviation attains 30°. An electric motor, or some other
(e.g., hydraulic) device is therefore used for power stabilization, applying
to the outer gimbal ring a moment tending to reduce the angle of precession.

FIGURE 150

The stabilization motor is controlled by a sensing device mounted on the
outer gimbal ring, which records the angles at which gyro housing is tilted
relative to the outer ring.

Because of gyro precession, the angle of deviation increases when an
external moment appears. As a result, an opposing moment acts on the
motor shaft, unloading the gyro and stopping its precession. The stabiliza-
tion motor thus carries out a "supplementary reciprocal aid" for the gyro
(term proposed by N.N. Ostryakov).

The stabilization motor and the comparatively large masses fixed to the
outer gimbal ring of the gyro are frequently responsible for free oscilla-
tions in power-stabilization systems which disturb the normal functioning
of the device. Stability problems thus play a decisive part in these systems.

The gyroscopic systems proper of indirect (indicating) stabilization de-
vices (such as were examined in §§ 2 and 3 of this chapter) are completely
stable. The device as a whole may, however, be unstable because of free
oscillations in the follow-up system.

Some questions of the stability of follow-up systems are examined in
Chapter VI, §7.

This section contains a linear treatment of the stability of gyroscopic
frames. A nonlinear treatment of this problem, which takes into account
the Coulomb friction, is given in Chapter V, § 2.

The gyroscopic frame can be considered as a system of two gyros whose
outer gimbal rings have a common axis §—the so-called stabilization axis
(Figure 151). The axes ¥ and y* of the gyrohousings (or, which is the
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same, of their inner gimbal rings) are connected by a four-bar linkage in
such a way that they turn through equal and opposite angles (with anaccuracy
of up to high-order infinitesimals). The rotors of the two gyros rotate in
opposite directions.

We now form by Lagrange's method the equations of motion of the gyro-
scopic frame,

FIGURE 151

We introduce a coordinate system i fixed to the moving object and, as
in § 1 of this chapter, denote by o, o, o the projections of the angular veloc-
ity of this coordinate system on its own axes (Figure 152). The k-axis is

FIGURE 152

the pivot axis of the frame. In the frame itself two coordinate systems
&b, and g, are fixed, whose axes are respectively parallel. The §;-
and §,-axes coincide with the §-axis, while the n,- and n,-axes are directed
along the axes of the gyrohousings. The coordinate systems z'y’s and
2”2 are fixed to the housings, oriented in such a way that the y’-axis coin-
cides with the 5;-axis and the y'-axis with the my-axis. The #- and 3"-axes
are directed along the corresponding rotor axes.

We denote by a the rotation about the §-axis of the coordinate system §g,f,,
and thus also of the coordinate system §,m,, relative to the coordinate
system &7 fixed to the moving object.
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If the rotation about the my-axis of the system z'y'z relative to the co-
ordinate system g, (i.e., the tilting of the first gyro housing relative to
the frame) is denoted by B, the corresponding angle of tilting of the second
gyro relative to the frame will obviously be —pB, due to the four-bar linkage.

To express the kinetic energy of the frame relative to a coordinate sys-
tem having a translational motion (with origin at the gimbals center), we
use (344), (349), and (352) obtained in § 1 of this chapter for a single gyro
with similar arrangement of the axes.

The expressions for the kinetic energy of the housing and rotor of the
second gyro can be obtained from (349) and (352) simply by replacing the
letters B and ¥ by —B and —1 respectively. The energy of the entire sys-
tem, including the kinetic energy of the motor, is then

T=(§ It + T c0sB+ I-sin* P+ 4 cos?p 4 Csin?B) X
X (45 +e) +Uy+(EF) +c(G) +
42081 (5 + w)sinp+30(—i T +o) +
+(5 Tu+ 1+ 4) (0, co 2+ ac sinaf+ 3 &' (e3+ oY)+
+ (,’I I+ 1./sin*B+ I, cos?p+ A sin*p + C cos?B) X

x(—n‘uina-}-o‘eosl)’. (566)

where, in addition to the notation used in § 1, ® is the moment of inertia

of the rotor and the gear, having a transmission ratio j of the power stabili-
zation motor relative to its axis of rotation; &' is the moment of inertia of
the rotor relative to the axis perpendicular to the axis of rotation.

Terms which do not contain generalized coordinates or velocities have
been omitted from (566), since the equations of motion do not depend on
them.

Inserting (566) into the Euler-Lagrange equations (354), the following
second-order differential equations are obtained when all terms of higher
order than the first in @ and B and their time derivatives are neglected:

de
Uo+2lo+24) (22 4 S8)+2c Slpy2c 1 8 4

+(—I —2I,, —2C 41 2] ,+24)(oia — o o — ola) +
+ 8 (i %—;:—‘) =M
(567)
21, + A8 2B (Lo — L+ A—C) (a7 —w})—

—2C ‘:—I(—:—:—-{—m‘): M,

d (Buy)
dt

2c 21 420

aet =M,
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These equations can be considerably simplified if it is assumed that the
projections of the angular velocity of the frame o, ©,, o are also small,
and that the resultant moment M, acting on the rotors* is zero. This gives

I+ 3+ AR =M+ 1U+10

BSE _H(% +o)=N,,

(568)
H=2C %}:oomt.
where
I=I 42,424+ 8;
B=2(I,+ A4). (569)
The expression
da 1
& te=x (570)

in equations (568) represents the projection of the absolute angular veloc-
ity o! of the frame on its stabilization axis §. The first two of equations
(568) can therefore be written in the form

de, d . de
=M+ 8

- (571)
Bw—HO;=M'n

When problems of the -accuracy of stabilization are studied in accordance
with the theory of gyroscope precession, the so-called inertial terms

145¢ ana BSE

must be neglected in equations (571).
In the important case

My=0, (572)

where the resistance to the tilting of the gyro housings relative to the
frame can be neglected, the second equation (571) becomes, when

a1

B—={ is omitted,
i o =0. (573)

t

This means that the projection of the absolute angular velocity of the frame
on its stabilization axis § is zero when the motion of the frame is slow. It
is a relationship of the type of nonholonomic constraints {cf. Chapter II, § 4).

This property of the gyroscopic frame allows it to be used as a direc-
tional gyro. In view of the nonholonomic character of (573), angular dis-
placements of the frame, which may lead to considerable errors when it
is used as a directional stabilizer, appear at an arbitrary motion of its
stabilization axis. This problem was dealt with in detail in Chapter II, § 4

* In order not to complicate the calculations, the equations have been written for gyro rotors linked by
a transmission with a ratio of =1. It can be shown that the same equations (568) would be obtained
without this restriction,
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on the basis of equation (188), which is, apart from the symbols, identical
with equation (573).

If, in particular, the gyroscopic frame is mounted on a ship, then the
inclination of the deck relative to the horizontal plane will disturb the stabi-
lization during turns. Let the angular velocity of turning be o and the in-
clination of the ¥-axis to the horizontal plane be 8 (Figure 153). The fol-
lowing expression is then obtained for the projection of the angular velocity
of the ship on the frame's axis of tilting (the angular velocity of the Earth
is neglected):

%:—Osin.. (574)
Inserting (573) and (574) into (570) yields
2 —wsind. (575)

The frame will therefore rotate relative to the ship's deck.

FIGURE 153

Gyro horizons are based on a combination of two gyroscopic frames,
and gyroazimuthhorizons (Figure 154) on a combination of three gyro-
scopic frames. In the latter case two frames stabilize the central part
of the instument, which is suspended in gimbals, in the horizontal plane.
The third frame, whose axis is vertical, ensures stabilization in azimuth.

It is possible to adjust the gyro horizon by means of a gyroscopic pen-
dulum (Figure 155) with simultaneous elimination of the influence of the
ship's manoeuvers. The same principle is used as in the device with auxili-
ary gyro (with variable rotational speed) discussed in § 3 of this chapter.

The deviation of the pendulum from the perpendicular toward the plane
of the artificial horizon (the central part of the gyroazimuthhorizon)closes
the contact in electromagnets located on the pivots of the gyro-horizon
frame housings. This produces moments causing the central part of the
instrument to alter its orientation in space in the required direction. The
control characteristic of the electromagnets can be similar to that of a
relay. As will be shown in Chapter VI, § 1, this fact can cause consider-
able instrument errors when the ship rolls.
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If the amplifier lag is neglected, i.e.,

=0, (579)

then the following system of linear differential equations has to be solved:

d2 ag __JC ;.
Ia+H =5

[ 4
a2 da
B —Hg=0; (580)

di .~ da
The characteristic determinant of this system is
Ins H» —=

AM=|—Br B2 0 | (581)
joc  p IA4R

FIGURE 155

The following algebraic equation is obtained by expanding this determi-
nant and equating it to zero:

X (@M + a8+ e+ gk + ) =0, (582)
where the following notation has beenused:
a,=BIL;
a,=BIR;
B)2C3
ay=LH+4==;
(583)
ay=RH?;
a —+aic .
4

Equation (582) has a root A==0, due to the fact that a appears in the
system of differential equations only in its derivatives and is thus deter-

mined except for an arbitrary constant.
The other roots will have negative real parts if the Routh-Hurwitz

criterion
aaa,>aa3+-ala, (584)
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We shall now study the stability of the gyroscopic frame, neglecting
the Coulomb friction in the bearings of the gyro housings and of the frame
itself*. The moment M, in (568) is then the moment applied to the frame by
the stabilizing motor. If the latter is a dc motor with independent excita-
tion, the moment ME is (in kg):

. C
M=i<t, (576)

where C is the coefficient of the motor counter emfin v sec, g, the gravita-
tional acceleration = 9.8 msec~2, §, the motor-armature current intensity,

in amp.

S\

-

FIGURE 154

The terms in (568) containing the angular velocity oy represent the
perturbation effects on the gyroscopic frame, and can be omitted when
considering the stability. When (576) is taken into account, the first two
of equations (568) become

d% a@#_.C.
et la=eh (577)
d2 da
B -d-a— 7—0-
The following two equations should be added to this system:
di .~ da
(578)

do
t g Ho=—ub.

The first is the equation of the electric circuit of the stabilization motor,
and the second, the simplest equationof an amplifier having a time constant «.
Here v is the electromotive force at the amplifier output; R, the ohmic re-
sistance of the armature circuit; L, the self-induction of this circuit; p,

a factor characterizing the amplification of the entire electric device (pick-
up —amplifier)creating a tension proportional to the angle B defining the devi-
ations of the gyro housings from their mean position.

* For an analysis of the influence of the Coulomb friction cf. Chapter vV, §2.
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is satisfied and if all coefficients ay, @,, @, a; a; are positive. The last
condition is satisfied in this case. We insert the values of the coefficients,
as given by (583), into (584). This yields, after simplifications, the follow-
ing stability condition of the gyroscopic frame:

[N )
LA (585)

This condition was obtained in 1943 by V.1. Kuznetsov. Unexpectedly,
B, L, and R do not appear. The explanation of this will be given in Chapter
Vv, §2.

By the first of equations (569):

19'._.__2_!%__ 586
T Iy ¥2,+24+%" (586)

Therefore the left-hand side of inequality (585) is a maximum if j attains the

value STy
=Yz (587)

This value was adopted as most advantageous for ensuring the stability of
the gyroscopic frame. This conclusion must, however, be qualified, as the
calculations in Chapter V, § 2 show. The influence of the parameters B, L,
and R on the damping of the free oscillations of the frame will be examined
there by means of the energy method employed in studying the stability of
gyroscopic systems.

When ©5£0, the stability condition of the gyroscopic frame is more com-
plex than that given by (585). It was examined in a general form by
Reutenberg.

It is shown in Chapter V, § 2, how approximate frame-stability condi-
tions can be obtained by a simple energy method when the amplifier-lag =
is small.

Numerical example, Assume that I, 42424 = 4.75kgm sec?;
j=100; 8=2.,5.10-5 kgm sec?; B=0.05kgm sec?; H=10kgm sec; p=10v;
C=0,50vsec; R=10Q; L=0.1h,

The first of equations (569) then gives

I=1I +2I,+24+?8=5.00 kgm sec®.
The stability condition (585) is satisfied, since

i€ B
_I__T_io—1>o.

According to Kuznetsov, the most advantageous transmission ratio ) is

) I, +21, 424
=Y 243

A more precise value will be obtained in Chapter V, § 2 (p.197), where
optimum damping will be taken into account. An increasing transmission
ratio is, however, accompanied by an increased amplitude of the forced
oscillations of the gyroscopic frame during the rolling of its base (cf. Chap-
ter V, §3, p. 206). As a result, selecting the transmission ratio accord-
ing to optimum damping will not always be the correct procedure.
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Chapter V

NONLINEAR PROBLEMS IN THE THEORY
OF GYROSCOPES

§ 1. Sliding motions of gyroscopic systems

This section gives a strictly {mathematical] treatment, without any
geometric assumptions, of the so-called sliding motion of mechanical or
similar systems; this is illustrated by the example of the motion of the
gyroscopic heel equalizer of any given moving object. Sliding motion ap-
pears when the forces acting on the system are defined by discontinuous
functions. The point representing the instantaneous position of the system
in the phase space (in the phase plane) "sticks' on a surface (or line) of
force discontinuity, thus reducing the number of degrees of freedom of the
system.

Consider the system of differential equations

F=—0+w%
S=ttp—m(o).

which in Chapter IV, §4 described the motion of the gyroscopic heel equali-
zer of a moving object. In these equations ¢ is the dimensionless time
(previously denoted by <); 8 is the object's heel;. ¢ a magnitude proportional
to the angle B through which the inner gimbal ring of the gyro is tilted re-~
lative to the outer ring; and m(¢) a function defining the law of variation of
the corrective moment.

The case of a continuous function m(9) (see Figure 148) was discussed in
Chapter IV, §4. The function m () in Figure 156 corresponds to the so-
called contact correction without insulating interval; the curve itself re-
presents the limiting case of the curve of Figure 148 for ¢*— 0, and there-
fore for

(588)

x= vl",- - . (589)
The function m(g) in Figure 157 possesses an 'insulating interval"
—¢* < ¢ < 9* in which the corrective moment is zero. This is the limit-
ing case of the function given in Figure 158 for ¢°— %,
Consider first the case when the function m(¢) varies according to the
curve in Figure 156. The differential equations (588) can in this case be
written in the form: a0

d
F=%+9¢—msigne,

where ¢ is different from zero.

(590)
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> These differential equations are easily solved if one of the inequalities
¢ >0o0r ¢ <0 issatisfied; the solution was given in Chapter IV, §4. It is
easily seen that for ¢ >0 the solution of system (590) is

°=E;"—(°o+?o)‘+°o'
o= —22 4 0,4 ¢y —m)t+ s,

where ¢, and 8, are the initial values of ¢ and @ at ¢=0. It is obviously
assumed that ¢4 > 0.

(591)

mip)

———————— > TR

FIGURE 156

If $4<C0, the sign before m should be reversed in (591).
Assume, for instance, that

Pe=-+0. (592)

Solution (591) then becomes

0="0 — Ot +0;

(593)
13
p=—"Tg+ (B, —m)t.
This solution is valid only for
8> m, (594)

since otherwise ¢ would be negative from the very beginning. ¢ becomes

zero at "

=1, =2l—m (595)
and is thereafter negative. Solution (593) is therefore invalid for ¢>>¢, and
must be replaced by a solution of (530) corresponding to ¢ < 0. From the
above, such a solution will be of the type

mtt
= =T8¢+,
ant (596)
o="0 + O+ m)t,
with initial conditions =@, ¢ = —0 at instant £ =0 of a new time scale.
It is, however, meaningful only for
0, —m, (597)
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.

since otherwise ¢ would immediately become positive for ¢>>0. Comparing’
(594) and (597) we see that neither (594) nor (596) is valid for initial condi-
tions satisfying the relationships

—m b +m,
?’=0. (598)

It follows that certain additional assumptions must be made in order to
solve the problem.

m{y) m(p}
M = p— n| [
- p.
r* ? ALES f
-m -T-m
FIGURE 1587 FIGURE 158

It will be shown below that if the curve in Figure 156 is considered as
the limiting case (for ¢* —0) of the curve in Figure 148, then the solution
corresponding to initial conditions (598) will be

=0, 008, (599)

In this case the phase point S, having coordinates ¢ and 8, slides along
the ordinate (Figure 159) which separates the regions in which solutions
(593) and (596) exist; for this reasonthe motion definedby (599) is called slid-
ing motion.

The phase trajectories defined by (593) will now be plotted. It will be
shown that all phase trajectories are represented by identical parabolas
with a common axis forming an angle of 135° with the ¢-axis.

It follows from (593) that

04 p=—mt 40, (600)

The following equation of the phase trajectory is obtained by eliminating the
time ¢ from the second equation (593) by means of (600):

i -_
p=— g O+ — 0P — 2" 0o — ). (601)
This can be reduced to the canonical form of the equation of a parabola
y=2pz, (602)

by adopting a new system of coordinates with origin at 0 (the parabola apex)
having the coordinates

¢
='—2;f—°0+ 3"8'! '
[
b=—32+8+ 5 (603)

and with the z- and y-axes rotated counterclockwise through an angle of
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135° relative to the ¢- and 8-axes (Figure 160). Then

P o of |
p=¢ vl (604)
. bt
0=0 4 T
and
m
P=-§7-f- (605)
It follows from (603) that
pt+i=7%. (606)

For 8,>m, (9,=-0), the apexof parabola (601) thus lies on the straight line
(6U6), while the parabola itself always has the shape defined by (602).

It is thus seen that all phase trajectories in the ¢8 plane can be plotted
by using the same template in accordance with (6U2) and (605).

The motion of the phase points on any of these trajectories starts from
(%> m, o= 0) in the direction of increasing ¢ and decreasing 0.

At the instant
=22 (607)
[ attains its maximum,
__ (0g—m)?
=" (608)

in accordance with the second equation (593).
The corresponding value of § is obtained from the first equation (593):
@

8 =0,—5> + 7 - (609)

A
P

? 4
-m
FIGURE 159 FIGURE 160
Also, at the instant
ty="2
Rt} (610)
by the first equation (593), the angle 0 reaches its minimum
o
0y =0, — 5 (611)
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The corresponding value of ¢ is

o
?:=—°o+ﬁ.=—°:- (612)
Lastly, as already stated (p. 179), ¢ again becomes zero at the instant

t, =2 ('o: =)

the corresponding value of 8 being, by the first equation (593),
0, =—0,42m. (613)
It is easily seen that for 8,°>3m,

16, |>m; (614)
for m <{9,<3m the corresponding trajectory ends on the ordinate section
—mi<m. (615)

This last observation is very important for plotting the trajectories of
the phase points in the region of negative values of ¢. In this case, i.e.,
for ¢ <0, the system of differential equations

a=—0+9,

d (616)
F=0+¢—m,
which is valid for ¢ >0, should be replaced by the system
a0
21 =—(04¢)
(617)

Xt otm

The system of differential equations (617) becomes identical with system
(616) if ¢ and 8 are replaced by new variables

$=—¢ and §=—0. (618)

All the trajectories in the region ¢ <0 are therefore obtained from the
trajectories of the region ¢ >0 by two successive mirror transformations
about the ¢~ and 9-axes or, which is the same, by rotating the semi-infinite
plane ¢ >0 through 180° about the origin.

A trajectory for which

8,> 3m, ¢,=0, (619)
ends, according to (613), at the point
8,=2m—§,<—m, §,=0, (620)

and can therefore be continued into the region of positive ¢, if
8, —=—(2m —8,), 9,=0; (621)

if (619) is taken into account, it is found that 8,>>m,
All the trajectories starting from points

m < 8,<3m, $,=0, (622)
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will end on the section —m <0< m of the ordinate, and cannot be continued
into the region of positive ¢. This is because trajectories (593), located in
the region of positive ¢ and starting at points

m <8, <<3m, ¢,=0,
end on this section.

The motion of the phase point § in the ¢8 plane is as follows: The point §
moves clockwise along a spiral curve (Figure 161) consisting of parts of
parabola (602), cutting off sections on the ordinate that successively de-
crease by the magnitude 2m. The motion along the spiral continues until
the last parabolic arc ends at a point of the section —m <0< m of the
ordinate.

7N
AN I
\
{

FIGURE 161

As already mentioned the subsequent motion requires a special study.
Solution (599) can be obtained formally by substituting ¢ ==0 in the first of
equations (616) or {617). In this case

a0

‘—‘=——O. (623)
and therefore

0=20,¢", (624)
i.e., the heel angle of the moving object will tend asymptotically to zero

for |8, < m.

A strict reasoning, leading to the same result, starts by considering
the motion defined by equations (590) as the limiting case of the motions
satisfying the equations

D—=—0+9)
X0 —m (o) (625)

where m(p) is a function of the type shown in Figure 148; in addition it is
assumed that the 'linearity zone' of the curve, i.e., the interval(—e¢®*, ¢*),
tends to zero.
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Since the function m(¢) is continuous, the solution of system (625) de-
fines on the plane ¢8 (Figure 162) continuous curves with continuously vary-
ing tangents. Each curve is a trajectory of the phase point § having co-
ordinates ¢ and 0; they define the instantaneous tilting angle of the inner
gimbal ring of the instrument and the object's heel for given values ¢, and
0, at t=0.

With increasing ¢, the point S tends to the coordinate origin for any
initial conditions. This motion was discussed in detail in Chapter IV, §4.

FIGURE 162

Let the initial values g, and §, be such that point § lies to the left of the
straight line p==—¢* (Figure 162). Then, as follows from (591) after re-
placing m by —m, point § will move along the parabola

o="0 + @+ %o+ m) t+ oy
0=—"T — O+ o)t +0

(626)

and will after a certain time reach the straight line p=—¢*®, where § as-
sumes the value 6°.

The subsequent motion of point § will satisfy the linear differential equa-
tions (515) considered in Chapter IV, §4; after substituting ¢ for < these
equations can be written in the form

de
d
a =0+ —=,
where
:=%. (628)
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" The system of differential equations (627) will be solved under the as-
sumption - . The solution will therefore be of the form (532), and
contain hyperbolic functions. It is easily seen that the solution corres-
ponding to the initial conditions 8 =0°, ¢ —=—¢* is

p=¢e 7'[—?‘chpt+(1:m—£:—+—wsh pt].
. . (629)
0=e_7'[0°chpt+“—_2)2:—+2—’.shpt],

where

p= g VRE—4). (630)

Two cases are then possible depending on the initial value 6°: either
the point § remains in the zone of linearity —¢* < ¢ < ¢* and attains the
origin at t— o, or the trajectory of the point § intersects the straight line
¢=19% the subsequent motion being described by (591) after a suitable
change in the time origin (Figure 162).

The instant t==¢, at which ¢ becomes zero and the phase trajectory inter-
sects the ordinate is found, according to the first of equations (629), by
solving the transcendental equation

2up®
(r—2)g*+260°
which has a positive root ¢,>0 if the inequality
Zpe* <(x—2)9*20° (632)

is satisfied or, which is the same, if
% -2
0">(pL ’““T) 9°. (633)

If (633) is not satisfied, it can be shown that ¢ increases monotonically,
with zero as limit, so that the point remains not only in the zone of line-
arity —p* < p < ¢* but even in the left-hand semi-infinite plane e << 0.

Assume that inequality (633) is satisfied. It is then obvious that the
point § will leave the zone of linearity —¢* <{¢ <{¢* if (Figure 162)

m > 9%, (634)

where ¢, is the maximum value of ¢ during its variation according to the
first of equations (629).

The maximum of ¢ is obtained by equating its time derivative to zero;
this is, by (629) and (630),

th pty= (631)

d -2t 2 34) ¢® 4 x0°
H=e T e — et +Plohpr — E=IIEER el (635
Putting %:0, we obtain
thpt, —a, (636)
where
=2 _(x—1)g*+6°_ (637)
R T S T L

The roots of (636) determine the instants at which ¢ is 2 maximum. It
is easily seen that a positiveroot ¢, always exists: it is sufficient to prove
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that thpt, << 1. This last condition is satisfied, since the inequality
21— 1) §* +0°] < (22— 30) 9*  of° (638)
is equivalent to (633), as can be shown by the identity

2—2_ Zu(x—1)— (12— )
p———= — 2 . (639)

By substituting (630) into this equation, it can easily be seen that it is an
identity.

The following expression is obtained for the maximum of ¢ by substitut-
ing t=t, in the first of formulas (629):

x¢

Pu=¢€ chpt,,[—(p‘—}-(l-—z)%'ﬁthpt,]. (640)
It is known that hyperbolic functions satisfy the following equations:
S | 8 e —a
hpta == shMta=g=x. ¢ "=} 135" (641)

(a=thpt,).
Condition (634) can therefore be written in the form

g°
2

3-.'!=(1—a)&_%(1+¢)—‘%_%[a( ;24— 1]>1. (642)

N = . . s
For large values of x, the ratio P can be expanded in a series in powers

1

of —:
- 1
L = _ 4\ 7 _ 2 8 .
s=rme=(1-3) "=tteta+--- (643)
Similarly
1
2 4\% __ 2 2
T=(1-3) =t—g—5— - (644)

Inserting ¢* from (628) and (644) into (637), the expression obtained for
a can be expanded in the series

Pt L
R I SEE T

PR LN S W NT I (645)

where b depends on m and .
Inserting (643), (644), (645), and the value of ¢* from (628) into (642)
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The limit of

2= Tn—z_-"_%%-}-...)%’“"‘ (647)
for x— oo is unity, since
,1‘_1’1: lnz—lxm[ (ln m?_:o lnx)]=0. (648)
It follows that
limfr =2, (649)
2>

The maximum of ¢ thus satisfies the inequality ¢, > ¢* for 8°>m and
sufficiently large values of x. This means that in this case point § enters
in the zone of nonlinearity ¢ > ¢®.

The time which it takes for the point § to pass through the zone of line-
arity —e* < ¢ < ¢* is the shorter, the larger x, i.e., the narrower the zone.
In fact, this time is less than t,, which by (641) is

1—a

1

Similar calculations show that this expression is zero when x— co.

For 6°<m, the phase point § remains in the zone of linearity. In this
case ¢, < ¢* according to (649). If (633) is not satisfied, so that ¢ has no
maximum, the point § will move toward the origin with ¢ increasing con-
tinuously (Figure 162).

To find the law according to which the point § moves in the zone of line-
arity, consider the limiting case of (629) for x—» oo, replace the hyperbolic
functions by exponential functions, and substitute (628) and (630):

_m % -2 2x80 [—%+%"('_0]‘
= {(xvfz(z—d) +mV1.(1.—4) -i) -
a2 20 [-3-3v&a ]}
—(xﬁ(t—i) +mV1.(1.—4) +1)
2m [_%4.;. :(.—4)]! (651)
0°1.\’:(:—4)) +
=2 2m [—%—%m]'}
+(1 Va (% — 4) 0°1.V1(1.—4))e )

Va (. —§)
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Since .
lim[ —F + 5 ViG—48]=—1, (652)

the following formulas are obtained from (651) when x— co:
0=0%"¢, ¢=0. (653)

The same result could have been obtained directly from the differential
equations (627). In fact,

D e *
and therefore in the limit
aams
(655)
=0,

whence we again obtain formulas (653). This derivation presupposes, how -
ever, that the limit of the solution of a system of differential equations is

8
So

FIGURE 163

identical with the solution of the limit system of the same differential equa-
tions. The derivation given in this paragraph is therefore more rigorous.
Numerical example. Let the function m(g) vary according to
Figure 156, where
m=0.0818, ¢,=0, 08,=0.209(12°).

Since 8,>>m, the point § will, according to (593), move along the para-
bola 845,845, (Figure 163), the function ¢ reaching its maximum

8, —
ty= 2" =1.555
at the instant

o= ‘_""—;nL” =0.0989.
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The following systern of differential equations will describe the motion
in the second region of the phase plane:

F=—0+9,

dy -°+ (657)
=T
Adding these two equations gives
& +2=0, (658)
whence
04 ¢ =const. (659)

The phase curves in the so-called "insulation interval" —¢* < ¢ <¢* are
therefore straight lines having a negative slope of 45° (Figure 164).

FIGURE 164

Divide the 98 plane into two by the straight line AC
0+ ¢=0. (660)

This line bisects the second and fourth quadrants of the phase plane. The
motion of a phase point will be from left to right above AC, and from right
to left below this line. The points of the bisector are equilibrium points,

since by (657),

Except for A(p* —¢*), and C (—¢*, ¢*), all these points are points of un-
stable equilibrium, as is easily seen from Figure 164. Strictly speaking
even the equilibrium at 4 and € is unstable; ithas, however, certain peculi-
arities which will be examined below.

The sections AB and CD, eachof length m, are sliding lines. In fact, the
straight parts of the phase trajectories of the region —¢* <¢<¢* end on
one side of AB, since it lies above AC. On the other hand, it lies below the
line §==m — ¢ containing, according to (608) and (609), the points of parabo-
las (601) most remote from the ordinate. Therefore the parabolic parts of
the phase trajectories of the ¢ > ¢® region also end on AB  Thus when the
phase point reaches AB, it remains there.
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"The heel angle at that instant is

o,=o,_é +3=—00171.
At the instant
ty= & =255,

m
the magnitude 8 of the object's heel reaches its maximum
9
0,=0, — 5% = —0.0580,

The corresponding ‘lalue of ¢ is
]
fa=—0+ 3= , == 0.0580.
Finally, ¢ again becomes zero at the instant
t,=20—m 34y,

The corresponding value of 8 is
0, = —0, - 2m = —0.0454.

Since the values ¢,=0, §,=—0.0454 define a point inside the section
—m <A m of the ordinate, the subsequent motion satisfies the law

°=.‘¢", ’Eo.
It follows that the heel angle at t= 1.00 will be
0=10,1%—=-—-0.0168 (59).
In this given case the heel angle § decreases from 8,=0.209 to 8=
= =0.0168 during a dimensionless time
t=31141.00=4.11

and continues to decrease after this.

Consider now the case when the corrective moment varies according
to Figure 157,

The function m(¢) in the system of differential equations (588) is de-
fined in this case by the following equations (Figure 156):

>0t m(e)= m:
—*<e<9* m(p)= G

r<9*% m(p)=—m. (656)

The 98 plane consists therefore of three regions:

P>e% —* <o<e* p<—9%
Inthe firstregion, ¢>¢®*, the system of differential equations is of the type
studied above. The phase curves are the parabolas (601) whose common
axis is the straight line (606).

The phase curves in the third region are polar-symmetrical to the phase
curves of the first region, as in the case discussed on p. 182,
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« A detailed study can be made of the problem of the sliding motion along
AB as limit, taking into account that the curve in Figure 157 can be con-
sidered as the limiting case of the curve in Figure 158 for ¢%—» ¢®,

This study is carried out in the same way as above but is analytically
simpler,

The motion of a phase point along AB takes place according to the first
of equations (588), in which we put p=¢*:

F=—0+¢*), (661)
whence
0=—¢* 4 (%+¢*) e, (662)

where 0, is the value of § at the beginning of the phase point's motion along
AB.

Point A4, having coordinates p==¢®, 0==—¢* is the limit for the motion
described. It defines an equilibrium position of a peculiar character: the
phase point § returns to this position after a small deviation from it provided
that this deviation is inside the curvilinear sector I — I (Figure 164). When
the deviations are outside this sector, the phase point moves to the region
—¢* < ¢ <¢* and then approaches point € asymptotically. Deviations along
AC are exceptions, since all points on it are, as already mentioned, unstable
equilibrium points.

It is thus seen that point A (and also point €) represents a ""semistable"
equilibrium position of the system.

«

FIGURE 165

We now compare the various nonlinear corrections of the heel-equalizer
gyro. If m(¢)is of the type shown in Figure 148 or 156, the object's heel
tends to zero at the limit. In the case just considered (Figure 157), where
an "insulation interval" exists, the instrument does not bring the moving
object into a position in which its heel is absolutely zero.

Due to the existence of various disturbances, the phase point will be
"knocked out" of the semistable equilibrium positions 4 and € and move
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forward and back near AC; the object's heel will therefore vary in the .
interval —¢* <0 9*.

If the corrective moment obeys a more complex law, such as that re-
presented in Figure 158, without discontinuities in variation of ¢, the
general pattern of motion of the phase point remains nearly the same.
Sliding motion is in this case replaced by motion along spiral arcs about
the points 4 and €, which now cease to be even "semistable".

The phase trajectory "coils" around AC (Figure 165), each point of which
is an unstable equilibrium point. These points are characterized, however,
by a certain peculiarity which unstable equilibrium points usually do not
possess: At small deviations of the phase point from any equilibrium posi-
tion on AC, the phase point bypasses one of the extreme equilibrium posi-
tions 4 or C and approaches again the "lost" equilibrium position; these
"approaches'' are then repeated to infinity, the phase trajectory approach-
ing AC asymptotically.

§ 2. Energy method for investigating the stability
of gyroscopic systems

The most common causes of instability in gyroscopic systems are the so-
called artificial forces caused by stabilization motors, corrective devices,
and various amplifiers. In contrast to friction, which as a rule contributes
to the damping of the natural oscillations of the gyroscopic systems, the
artificial forces can "rock' the system by increasing its kinetic energy.

When the parameters of the gyroscopic system approach those values at
which it becomes unstable, the natural oscillations of the systems are usu-
ally similar to nutation-type harmonic oscillations. The work of the arti-
ficial forces and the work of the forces damping the gyroscopic system have
opposite signs and balance each other. The gyroscopic system behaves as
if it were unaffected by external forces, undergoing oscillations similar to
undampened nutations. It can therefore be assumed with sufficient accuracy
that the frequency of oscillations of the gyroscopic system at the stability
threshold equals the frequency of nutations.

These considerations lie at the base of the so-called energy method for
investigating the stability of gyroscopic systems; the application of the
method is illustrated below by the example of the motion of a gyroscopic
frame (or monoaxial gyroscopic stabilizer) when the Coulomb friction is
taken into account. A similar procedure can easily be followed also for
other nonlinear forces acting on the gyroscopic systems.

Consider first the problem of the stability of motion of a gyroscopic
frame in the presence of Coulomb friction in its simplest formulation,
namely when the counter emf of the stabilization motor and the transient
processes in the circuit of its armature are neglected together with fric-
tion in the bearings of the gyro housings. When Coulomb friction in the
stabilization axis* is taken into account, the equations of motion of the
gyroscopic frame (Chapter IV, § 5) can then be written in the form

a2 d d
’i:%+”¢—f=—”é‘8"7}—kﬂ, (663)

* Unlike the notation used in Chapter IV, §5, the stabilization axis is denoted now by &.
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) ;i u___o (663)

where I is the total moment of inertia of the frame, rotors, and housings
of the gyros with respect to the stabilization axis z, together with the
moments of inertia of the motor rotor and the transmission parts linked
kinematically with the frame, referred to the same axis; B is twice the
moment of inertia of each gyro (housing and rotor) with respect to the
housing axis, together with the referred moments of inertia of the gyro
coupling, solenoids, pick-ups, and other parts of the frame connected to
the gyro housings; H, twice the angular momentum of the gyro rotor; a,
the angle through which frame tilts about z-axis; B, the angle of deviation
of gyros from the mean position; M, moment of Coulomb friction in the
bearings of the stabilization axis; %k, factor of proportionality between B and
the moment applied to the frame by the stabilization motor (slope of stabili-
zation-moment characteristic).
Multiplying the first of equations (663)by -:—:, the second by %, and adding:
d?a de L
amar +Ban :f :: —M, 5 @ sien dt —kBg; it (664)
The kinetic energy of the frame less the constant kinetic energy due to
the rotation of the rotors, is

T~ $[1(5) +5(2)]

Equation (664) can be written in the form;

ar
=— a5 s —kp e e (666)

The stability is therefore determined by the behavior of the right-hand
side of (666). Its first term always satisfies the inequality,

d
—M, 55 sign S <0, (667)

i.e., friction in the bearings of the frame suspension tends to reduce the
kinetic energy of the frame and therefore contributes to the damping of its
oscillations. On the other hand, as will be shown below, the second term
on the right-hand side of (666) contributes to the increase in the kinetic
energy, i.e., causes 'rocking" of the frame.

As a first approximation it can therefore be assumed that the motion of
the frame is mainly determined by the system of equations

S L dB_
15+ 58 —o,

% (668)
B'ﬁ"’— ———0.

In other words, it is similar in form to the periodic motion described by

¢=am(u+3)'
B=bsin (vt 4 3), (669)

where v is the angular frequency of nutation of the frame free from fric-
tion in the suspension bearings and from the action of the "artificial"
generalized force kf. This frequency is

vz%. (670)
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The oscillation amplitudes of frame and housings are connected by the

equation T
b=—a v K (671)

as is shown by inserting (669) and (670) into (668).

, d . .
The influence of the forces k8 and ——M,ngn—d—:- during a comparatively

short period, such as one nutation period
r=2 (672)
v

can be assessed by means of (669), in which the amplitudes a and b are
assumed to be constant. Inserting (669) into (666) yields, after omitting 3,

-':—1"-= M vasin vt sign (—va sin vt) -4 kabv sin® ¢, (673)

It follows that AT, the variation of the kinetic energy during one nutation
period, is given by

AT = j [— M va sin vt sign (va sin #) | kabv sin*+¢] dt. (674)
]

Integrating this expression gives
AT = —4aM -} xabk. (675)

If the amplitude b satisfies the inequality
AM
b>—“f, (676)

we conclude that the kinetic energy of the frame and the oscillation ampli-
tude increase; otherwise, the oscillations are damped. It follows that

AM,

b‘=_nk (677)

is the approximate value of the amplitude of unstable periodic motion.
The gyroscopic frame will therefore be stable if the amplitude of the
oscillations of B, caused by any disturbance, does not exceed the value b*.

Such a disturbance may be a constant moment M about the stabilization axis,

suddenly applied to the frame. In order to find the initial amplitude of the
oscillations caused by these moments, friction and the moment caused by
the stabilizing motor will be neglected. The equations of motion of the
gyroscopic frame are then

d%a ap
155+ HE=M,

p B _ e (678)
de2 dt
The solution of these equations for the initial conditions
a=p=0, H=2F=0, (679)
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is of the form

¢=% (1 —cos ),
M M ) (680)
P——Tt-— ;il—slnvt.
It follows from these equations that
b=2. (681)

is the initial oscillation amplitude of the tilting angle of the housings,
caused by the sudden application of a moment M. In accordance with (676),
the frame oscillations will therefore increase if the inequality

M AM
> (682)
is satisfied. The magnitude
4HM
M¢=—=_—"""¢2 683
<k VI (683)

thus characterizes in a certain sense the frame stability following disturb-
ances by constant moments.

It is possible to draw conclusions from (675) not only on the stability,
but also on the variation with time of the oscillation amplitude of B. The
following approximation of the kinetic energy of the gyroscopic frame is
obtained by inserting (669) into (665) and using (671):

=7 (Ia™?sin? vt - BbS® cos® vt) = 5 BV, (684)

The variation AT of the kinetic energy during one nutation period is there-
fore approximately

ATg%-i—“:Bv’b%-?—-. (685)

The amplitude b is assumed to be a slowly varying function of time (the
variation of b during a nutation period has till now been neglected in this
section).

The following differential equation is obtained by equating the right-hand
sides of (685) and (675) and expressing a by (671):

2xB 30 =b Y E (4, + ki), (686)

Inserting (670) yields after simplifications

db _ —AM, 4 xkbd

@ ® ¢ (687)
The variation of b with time can be determined by integrating (687).

We shall now study the gyroscopic frame stability in a more general way,
taking into account transient processes in the circuit of the stabilization
motor armature, its counter emf, and frictionin the gyro-housings bearings.
The corresponding differential equations can be obtained by adding to (580)
(Chapter IV, §5) terms representing the moments due to Coulomb friction
acting about the stabilization axis of the frame and the axes of the gyro
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housings. The following system of equations is then obtained:
dta dp__JC . . da
I—E--I-H-a’——-‘—t—ﬂ,stgnﬂ,

a%
B gw—

di gy /
LS+ Ri4jCg; =—pp-

In addition to the notation already defined, M, is the moment due to Coulomb
friction in the bearings of the gyro housings.

Assume, as before, that in this case too the motion is determined mainly
by the system of equations (688), i.e., that motion of the frame during one
or two periods is similar to the harmonic motion described by

da . dp
H—d—‘-——Mytlgn 7' (688)

a=a cos$,

B=bsin . (689)

Formulas (689) differ from (669) only by the constant ¥ which determines
the time origin.
Inserting (689) into the third of equations (688) gives

L 4 Ri=(ajC —pb)sint. (690)

Assuming that the initial transient process in the armature circuit has al-
ready come to an end, we have

— YUC—Bb o (vt — (691)
i VR AL sin (vt —s),
where
R vL (692)

ml:—ﬁ, Sln‘:T(_;—-vTI',‘.

The validity of (691) is easily shown by direct substitution into (690), using
(692).

As before, we multiply the first two of equations (688) by -:-'i'- and %g— re-
spectively and add, thus obtaining
ar o da . da df . dp , jC . da
=M. s'g"’iF—MVTz's‘g"?i’*',_t'ig" (693)

where T is the kinetic energy determined by (665). It follows from (689)
and (691) that

(—va sin ) sign (—va sin vt) dt = 4a,

oc--.‘lg o'-—-.‘l' oc..-.‘w

da . da
rr sign at dt

ap d

© ey ‘lg ot  |%

—t—sign—ﬁdt= vb cos vt sign (b cos vt) dt = 4b,
(694)
=
‘. de vajC —pb .
! ii‘—dt= g7 (smvtcoss—cosvtslnc)x

naR (pb — vaiC)

X (—-Va sin Vt) dt = W o
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Integrating (693) and subsituting (694) gives the following expression for
the variation of the kinetic energy AT during one nutation period:

#a/CR (ub — vajC)
@D (695)

Inserting (670) and (671) into (695) yields

o7 =—4(n VT M)+ i VT e

The value of AT is always negative, and the gyroscopic frame is therefore

always stable, if
CH

AT = —4aM,— 4M,+

which is identical with the stability condition (585) obtained in Chapter IV,
§ 5 for the case M,—:.M,:O. If condition (585) is not satisfied, then, by
analogy with the above, frame oscillations with small amplitudes will be
damped, and those with large amplitudes will increase.

It follows from (696) and (685) that the natural oscillations of the gyro
housings will be damped, according to the law

1db m(M—PM]/_)

-‘z?rﬁl%ﬁ)' ’_‘i—%). (697)

Numerical example. Assume, in accordance with the data for the
example given in Chapter IV, §5 (p. 275): I = 5kgm sec?; B = 0,05kgm sec?;
H=10 kgmsec; j=100; C=0.50 vsec; R=10Q; L=0.1h; p=10v, Assume
the following values for the moments due to Coulomb friction: M,=0.5kgm,
M,=0.001kgm.

When friction and motor torque are neglected, the frequency of nutations
of the system is by (670)

v=v—g-7-=20sec'1.
It follows from (697) that
1 db 0.0324
T?T_"'T'_z 21.

For 5>>0.0146 (50'), the counter emf of the motor plays the main role
in the damping; for b<{0.0146, on the contrary, Coulomb friction is de-
cisive,

From (696) and (685) the influence of the parameters B, L, and R on
frame stability can also be determined when M, = M,=0. This problem
remained unsolved in Chapter IV, § 5, since these parameters did not ap-
pear in the stability condition (585). In this case

db nb2CRH (|C @ B
2B g =~ (T~ 7)) V T (698)
whence, by (670):
1 db__ JCR icC a
bar T T g (RE L) (_"‘ Tz‘)' (699)

The frame oscillations are damped more rapidly the larger the right-
hand side of (699).
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When the stability conditions (585) are satisfied, the parameters B, L, -
and R enter into the expression for the damping decrement of the natural
oscillations of the gyroscopic frame.

According to the first of equations (569) (Chapter 1V, §5):

I=I;.—|-21,-+2A+]’9,

where 0 is the moment of inertia of the stabilization-motor rotor with
respect to its axis of rotation; It,4-2I»+24 is the moment of inertia of
the frame together with the gyros with respect to the stabilization axis.

The right-hand side of (699) is thus a fairly complex function of the
transmission ratio j. The selection of the most advantageous transmis-
sion ratio according to (587) has therefore to be reconsidered. 1If, for
instance, CH=">5pI, I==2.10°8, then the strongest damping will occur
at a transmission ratio 2.4 times larger than that given by (587).

The right-hand side of (699) contains the factor

R __ (700)
R LT
which enables us to study the influence of the resistance R of the electric-
motor armature circuit, the self-inductance L of this circuit, and the
moment of inertia B of the gyro housings, none of which appears in stability
condition (585), on the damping rate of the frame oscillations.

An increase of the self-inductance L reduces the factor (700) and thus
also the damping. For L= const, damping is improved when R increases
from zero to

R* =L, (701)

becoming worse with any further increase of R.
The total moment of inertia of the gyro housings B appears in (700) in
terms of the frequency v of nutational gyroscopic-frame oscillations, given

by (670) "

VT

An increase of B can improve the damping slightly, since L is usually
small, the inductive reactance vL of the armature circuit being less than
the ohmic resistance R.

An increase of B is undesirable from another point of view. It follows
from the first of equations (680) that when a moment M is suddenly applied
to the gyroscopic frame, the amplitude b of the frame's angular oscillations
about the stabilization axis is proportional to the moment of inertia B. 1t
is important to note that the amplitude of the forced oscillations of the frame
about the stabilization axis, caused, for instance, by the ship's rolling, al-
so increases with the moment of inertia B, as will be shown in § 3 of this
chapter. An excessive transmission ratio j is undesirable for the same
reasons.

Lastly, we shall analyze the influence of the time constant in the circuit
of the amplifier which supplies to the stabilizer motor a voltage depending
on the angle of deviation from the mean position of the gyro housings. When
the influence of this factor is taken into account, the third of equations (688)

v=

di Y. |
LY 4 Ri4jC 3 =—pb
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‘has to be replaced by (578):

LY +RitjCH=y (702)
t 2 fv=—pp. (703)

Here < is the time constant of the amplifier, usually comparatively small,
and v is the voltage at the amplifier output.

Ignoring the processes encountered in a system with high frequencies,
(703) can be approximated to

v=—-p,p—-z —p(ﬂ—-'c ) (704)

since for low frequencies vz —pB.
The third of equations (688) can therefore be written:

Ly cT+m_._,;( _.t") (705)

When (689) is inserted into (705), a differential equation is obtained
whose integration yields an analytic expression for the current §. Inserting
this expression into the energy equation (693), the stability condition AT <0
becomes for Mg=M, ==0

!IS__%(a + v’g/—)>°‘ (706)

This result can also be obtained from the Routh-Hurwitz criterion if
the time constant is assumed to be small; Reutenberg derived it in this
way.

The fact that loss of stability in gyroscopic and other mechanical systems
is accompanied by the appearance of steady increasing oscillations, similar
to harmonic oscillations, makes it possible in many cases to give a simple
approximate solution of comparatively difficult problems in the theory of
stability. This is done principally by establishing a correspondence between
the given mechanical system, which is at the stability threshold, and an-
other system, havingone degree of freedom, described by a linear differential
equation of the second order with constant coefficients,

d’z
dti +B ar +Cz (707)

The coefficients A, B, and C are selected so as to render the correspond-
ing motion as similar as possible to the motion of the mechanical system
considered. The stability depends on the sign of B.

Consider the problem of the stability of a mechanical system described
by a third-order differential equation with positive constant coefficients:

diz dx
X dtl +al 5 +ay—— ¥ +a,z=0. (708)

Assume that near the stability threshold the motion can for a short time
(one or two periods) be approximated by the harmonic law

z=acos (vt} 3), (709)
so that
Bz o (710)
an = T
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For stability investigations (708) can then be replaced by the following *
second-order equation:

d3z dz
The condition of asymptotic stability of the motion described by (711) is,
a,— w?ay > 0. (712)

At the stability threshold the coefficient of the first derivative in (711)
is small, and therefore hardly influences the oscillation frequency w; thus

=123, (713)

a
Inserting (713) into (712) yields the well-known stability condition
a,8, > ayay. (714)

Similarly, when the stability of a mechanical system described by a
fourth-order differential equation

d4 d3 d? d
s g+ gs + GrH o Has=0 (715)

is being investigated, it may be assumed that
diz , 42z 1 d2z 716)
W= g *TTadm (

so that the problem is reduced to that of the stability of a mechanical system
described by the differential equation

a;%',%+(az—-~’¢.——;‘7a.)—?%+¢=%.5=0- (717)
In this case the stability condition is
a,—w’a,-—:i-,—a4>0. (718)
As in (713), the frequency can be represented by the formula
u’=—:—:- .

Inserting this value into (718) yields the stability condition for a fourth-
order linear differential equation:

€0,0,> e 61+ ale,. (719)

[This is the Routh-Hurwitz criterion.]
Consider now the problem of stability in the Mathieu equation

-%;:—-l-(p-{-vcosZwt)z:O. (720)
Changing the time origin, this equation can be written
é
—‘%+px=—vcos(2wt+e)z. (721)

Assume as above that the law of variation of z at the stability threshold
is approximately

z—=—asin of. (722)
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* Inserting (722) into the right-hand side of (721) gives

d?z

g5t -1z =— 3 sin (30t 4 &) 5 sin (et + 4). (723)
According to (722) the following relationship is valid:
asin(ot+c)==¢silwtm:+¢eosotalno=zcosc+%%‘3linc. (724)

Using this relationship, equation (723) can be reduced to the form

da? dxr . .
75——%—‘7’ smc+(p.—%cosc)x= —iz'—sm(3ot+a). (725)
The solution of (725) is unstable if
sins> 0. (726)

On the other hand, it must be assumed in accordance with (725) and (722)
that [near the stability threshold]

p.——;—cos¢=.’. (727)

Equation (727) has a root 0 s, and therefore inequality (726) is
possible if

o —g<p<let+3 (728)

In accordance with (728) the instability region in the pv plane (Figure 166),
is the area between the straight lines

p —;—: ot (729)

These lines are tangential to the precise boundaries of the instability region,
which were established by Incex*,

In accordance with the general theory of Mathieu equations, for v>>0,
stability (or the so-called phenomenon of parametric resonance) obtains
inside a continuous range of frequencies e, bounded by the inequalities

»:g ot .:, (730)
where
\ o3 v
oy=p—gi
v (731)
O:%[I-I—}-.

If a term corresponding to linear damping in a mechanical system is added
to the Mathieu equation, we obtain

%-}-u :—:+(p+voo32mt)z=0. (732)

The following equation then takes the place of (725):

%-+(¢——32;-sint)%+(p.-—%cosc =

=— 3 sin (3ot ). (733)

The boundary of the instability region in the pv plane (Figure 167) is in this

* MclLachlan, N. W. Theory and Applications of Mathieu Functions. — Clarendon Press, Oxford. 1947.
[Translated into Russian. 1953,]
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case a hyperbola whose equation is obtained by eliminating the angle of
phase shift e between the relationships

@ ———sine=0
2 (734)
p—-;- c0s ¢ = 3.

In this case the instability region is narrower than for a=0, and disap-
pears altogether when v is small (Figure 167).

The above examples corresponded to linear differential equations of
motion for the mechanical systems. The same method can, however, al-
so be applied to nonlinear systems.

v
v
1 ]
i ; 2ot
! : ’ [
7] wi wfw!l 0 w? f
FIGURE 166 FIGURE 167

Consider, for instance, the Duffin-Bulgakov* equation

dz .
G H1@=Psinat, f({z)=—F(—2). (735)
Inserting into this equation
z—asin wt, (7386)

we obtain the approximation

d?z Ay(a)—P

—m—{-—'.—z:R(t), (7137)
where A4, (a) is the coefficient of sinwt when the function f(asin «f) is expanded

in a trigonometric series; R(t) is the remainder of the series [after the first
term). Formula (736) is a solution of the differential equation

d?z 738
< + (D’I:O. ( )

The following equation is obtained by comparing (737) and (738):
A,(a) — P =aov®. (739)

The possible amplitudes of the steady oscillations defined by (735) can be
approximately determined from this equation.

* Bulgakov, B.V. K zadache o vynuzhdennykh kolebaniyakh psevdolineinykh sistem (The Problem of
Forced Oscillations of Pseudolinear Systems). — PMM, No.1. 1943.
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. The following equation for determining the amplitude @ is obtained*
from (739) by substituting for 4,(a) its expression as a function of f(asin t):

+=
P4+ w’a=% I J(asin ¢)sin pde. (740)
—
Equations of the type
a2 dz\ d
Gt (= @) 5 +ee=0, (741)

in which ¢ is so small ("small parameter'’) that the solution differs only
little from the harmonic motion, can be similarly investigated.

From the mathematical point of view the above method is one of non-
linear mechanics. The strict theory of such approximate methods has been
given by Krylov and Bogolyubov.

In some cases the differential equations describing the behavior of a
complex mechanical or electromechanical system must be simplified, i.e.,
their order must be reduced.

In many cases the higher-order derivatives correspond to rapidly de-
caying transient processes of no great importance. In gyroscopic systems
of the indicator type these are the so-called inertial terms, which, because
of the unavoidable friction, cause rapidly damped nutations. When the order
of a system of differential equations is increased by allowing for secondary
phenomena, the accuracy of the result is not always improved. In fact, the
differential equations describing the system contain inaccuracies both in the
description of the functional behavior of the system's elements and in the
values of the various parameters. These inaccuracies increase with the
order of the system, andcancause excessive errorsinsolvingthe equations.

Experience shows that in many cases equations of the fifth or sixth order
describe in the best way possible the behavior of the mechanical system, and
any further increase of the order of the equations is undesirable.

Experiments and observations usually show which terms of the equations
determine the fundamental oscillation frequency of the system. By using
relationships of the type of (710) and (716), the study of the stability of such
a system can be reduced to that of a differential equation of the second
order.

§ 3. Forced oscillations of a gyroscopic frame
(monoaxial stabilizer)

By considering the forced oscillations of gyroscopic systems we can de-
termine the part played by parameters which are of secondary importance
from the point of view of stability, and to select values for these para-
meters which will not cause excessive forced oscillations of the gyros.

Consider first the motion of a gyroscopic frame when the base on which
it is mounted oscillates according to the law

6=20, cos (pt 4-3) (742)

* [Cf. footnote on preceding page.]
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about an axis parallel to the frame-stabilization axis §. We use equations
(571) describing the motion of the gyroscopic frame

du;
R (LR

¥

-‘T’—_H"%:M”'

which were obtained in Chapter IV, §5. The projection e of the angular
velocity of the base on the frame axis is in this case

de .
wg = g7 = —pO, sin (pt +3). (743)
The projection w‘g of the angular velocity of the gyroscopic frame on the
¢-axis can be written a0 P o
tl a

“’g=7{+]7—'7¢‘- (744)
where, as in Chapter IV, §5, a is the tilting angle of the gyroscopic frame
relative to its base and ¢ is the tilting angle of the frame relative to the
Earth. The angular velocity of the latter will be neglected.

1f, in addition, the Coulomb friction in the bearings of the frame suspen-

sion and the torque developed by the stabilization motor are taken into ac-
count, (571) must be written in the form

du +H ='—” sign o +!£t
—j(j41) 8p®, cos (pt +-3), (745)
o & _ 48
BW_H—JT——M,“‘"—‘—‘-.

Here, in contrast to Chapter IV, § 5, the frame-stabilization axis is de-
noted again by z and the axis of one of the gyro housings by y; M,, M, are
the sums of moments due to Coulomb friction in the bearings of the stabiliza-
tion axis and the axes of the gyro housings respectively.

a4

The angular ve1001ty i of the frame is small compared with the angular

velocity — —. at which the base rolls. Therefore, (744) leads to

sign—=—sign a9 (746)

To system (745) we add the equation of the motor-armature electric
circuit, which has the form of the third of equations (580) (Chapter IV, §5):

d .

LS 4 Ri+jC 55 = —pp. (747)
Inserting the value of from (744) glves

-}-Rt-{-)C "-IC 3 —pﬂ. (748)

Substituting 6 from (742) into (748) and inserting (746) into the first of
equations (745), the following system of equations defining the motion of
the gyroscopic frame is obtained:

do iC
dn +H———.—.1Il,stgn~z‘— +'7-t—

—J (i +1) 8p™, cos (pt -3), (749)
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a8

BEE _pst_ x.

an —dT———M algn
L3 4 Ri4jCc 2 = —yp— jCplysin(pt+3
3i jC gy =—pB—jCpYsin (pt +3).
In order to assess the influence of the Coulomb friction on the amplitude

of the forced oscillations of the gyroscopic frame, we assume first that
M,=M,=0. The corresponding equations are then

134 4 B9 —IC (4 1)0p%,cos(pt+3),

(749)

4 a\p
B 45 —H—--=0 (750)

L3 RifJC 3t = —pB— jCplysin (pt+3).

Since these equations are linear, the forced oscillations of the frame are
harmonic, having a frequency p The constant 3 in (750) can therefore be
chosen so that the following conditions are satisfied:

p==¢,cos pt, $,>0, (751)

where ¢, which has to be determined, is the amplitude of the forced oscil-
lations of the gyroscopic frame about the stabilization axis.
It follows from the second of equations (750) that

B==Bysin pt, (752)
where
Bo=2 4, (753)
»= 2B Y»
Furthermore, by the first of equations (750), using (751)—(753):
; )
-"2i=;(,'+1)epfoocos(pt+8)+(_’.’§—_p=1)%cospt. (754)
Using (751) —(754), the third of equations (750) can be written in the form:
[a sin (pt - 8) 4 b cos (pt + 8)] 8, = (c sin pt - d cos pt) o, (755)
where

. -+ 1) p30gL
a=pjc— U1 PO

p li+1) P8R
= UFT PR

. L ¢ H2 H
e=piC+ 5 (F—P)— 55 (756)

R ( A3
d=—E(F—pI)
c P
The following two equations are necessary in order that (755) be satisfied:

(a cos 8 — b sin 3) 6, =c ¢,,

(asin3 4 b cos 8) 8, = d ¢, (757)
From these equaticns we obtain
a2 -} b?) 8, cos == (ac + bd) ¢,
(a® 15§, (ac+bd) ¢, (758)

(a4 b?) 6, sin 3 =(ad — bc) ¢,
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so that

o= e 8 (759)
Viee + bd)2 + (ed—bc)s °

T 1 of
'}'0—" :1__:31 B, (760)

This result can also be obtained directly from (755).

The angle of phase shift 8 is found from (758).

It follows from (760) that the amplitude of the forced oscillations ¢, in-
creases inversely to ¢ and d.

In accordance with (670),

or

]
_’;_zvzl, (761)

and since usually v>> p, it follows that
& —p’l>0 (762)

It follows from the fourth of formulas (756) that d decreases in magnitude
inversely to the moment of inertia B.
The same is true for ¢, since the last term in the third of equations

756
(756), ull

— 2B

is much larger than the sum of the remaining terms.

It was shown in the last section that the damping of the natural oscillations
of the gyroscopic frame can be improved by increasing the moment of inertia
Bof the gyro housings; this, however, causes an increase in the amplitude
of the forced oscillations of the gyroscopic frame during rolling.

If as afirst approximationthe frequency p of the roll of the base is neglected
incomparisonwith the frequency v of the natural oscillations of the frame, and if
it is assumed in addition that L=20, then (756) becomes

a=jCp,

p= U+ 1) p*6gR
- [

L 763
c¢=pjC pB . (763)

gRA?

4= —"TF *

and the following approximate expression is obtained from (760) for the
amplitude ¢, of the forced oscillations:

pUEC? +[ U+ 1LP’9gR J"

qa=0
TV (re-t5) +(5ex )

(764)

This expression can be simplified still further. In fact, the product p*?C?
is considerably larger than the term

[ 7+ i)cp’eeﬂ ]’_
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*(This will be shown below in a numerical example.) However, the ratio
pH
»B
is many times larger than the term pjC in the denominator. Expression
(764) can therefore be replaced in a first approximation by

g =——PLCB 4, (765)
BY(piCP+ (gRpld)*

This formula is suitable and convenient for preliminary calculations.
Coulomb friction in the bearings of the frame suspension and the gyro

housings will now be taken into account. It can be assumed with sufficient

accuracy that if Coulomb friction is not excessive the forced oscillations

of the frame will remain almost harmonic if the ship's roll obeys (742).

Consider, for instance, the moment about the axes of the gyro housings due

to friction:

—M  sign —:f— (766)
We assume that the following expression can be written for B:
p==Posin (pt-+3), - = pBcos (pt +3), §*>0. (67)
Since the function
sign 98- — sign [pB® cos (pt -+ ¥)) = sign cos (pt +3)] (768)

is periodic, it can be represented as a trigonometric series
. 4 3 )
szgn[cos(pt—}-&)]=?[cos(pt+8)—."‘_’°__(3ﬂ+_).__. ..]_ (769)

The following approximation is obtained from (767) and (769) by retaining
only the first term of the series:
M, g
—M,:ign-:-f—z—#—‘-f—- (770)

The Coulomb friction in the bearings of the gyro housings can therefore
be approximated by an equivalent viscous friction, the viscosity depending
on the frequency and amplitude of the forced oscillations.

The case of the moment due to friction in the bearings of the frame it-
self (the stabilization axis) is different since the angular velocity of the
journal relative to the bearing is mainly determined by the tilting of the
frame base about the stabilization axis. The motion of the frame relative
to the Earth, which is of the order of several minutes of arc per minute of
time, can be neglected. For this reason the friction in the stabilization-

axis bearings is given in (749) by the term M, sign %%, and not —M,:tgn-‘?:—

as would follow from the more accurate equations (745).

The following approximation is obtained by calculations similar to the
above, assuming harmonic rolling of the frame base according to (742):
a0 4M, a0 AN, .

M,:lgnwgm—‘--d;—=— - sin (pt4-3). (171)
It follows from (770) and (771) that equations (749) can be replaced by
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the following equations:

% apg  jC . AM, . _
— j (i 1) 8 p™, cos (pt +3);
an & ___ AN, g
Bgr —Hg=—p0 (r72)

L% + Ri+ I'C'%- + pB=—pjCh,sin (pt 4-3).

These equations can be solved as follows. First, M, and M, are assumed
to be zero, the amplitudes ¢, and B, are determined by the method given by
(760) and (753), and the phase-shift angle § from (758). The value obtained
for By is then substituted in the right-hand side of the second of equations
(772), andthe problem of forced oscillations in the presence of a moment
{770) due to friction and an additional perturbation moment (771) is solved.
If the values ¢, and B, obtained for the amplitudes differ considerably from
¢ and B,, the calculation is repeated.

The numerical solution of system (772) is most simple when complex
numbers are used. We transfer the time origin so that 8=0, and replace
cos pt and sin pt by the exponential functions e# and — ie'® whose real parts
they represent. Lastly we replace the variables in (772) by the complex
variables

cp-»Xe"‘;
p - Ye"‘;

1> Ze', (7739

the complex numbers X, Y Z being the new unknowns. Here t denotes the

current intensity in the armature circuit, previously denoted by {.
Inserting (773) into (772), the following three algebraic equations in the

three unknowns X, Y, Z are obtained when the common factor e* is omitted:

—pIX +ipHY — Lz =1 e j(j - 1)0pn,

x
—ipHX 4 —pB+ 1 )y =, (174)
ipJCX + pY -+ (R+ IpL) Z = ipjCh,.

Since some of the coefficients in (774) are complex numbers, it is simplest
to solve by means of determinants:

AM i
i s i+ nep, ipH -
1
X=— 4N -
A 0 —pB +‘T’: 0 (775)
ipjCY B R+ ipL.
AN L. iC
| 1= —ili + 186 -
Y=3| —ipr 0 0 (176)
ipjC 1pjiCly R4 ipL
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WM, .
- ipH t == —i i +1)8p%,
1
Z = oM
A | —ipH —prs+:—ﬁ§- 0 (77
inc 3 ipjCly
where
‘P” [pn — j£.
—_ M
A= | —wm —pB i 0 (778)
ipiC B» R+4ipL

Let X,, ¥,, Z, be the real parts and X,, ¥y, Z, the imaginary parts of the
complex magnitudes X, ¥, and Z. It can be shown that the solution of (772)

is then, ¢ =X, cos pt — X,sin pt,

B =Y, cos pt —Y, sin pt,

779
i = Z, cos pt — Z, sin pt. (779)

The amplitude and phase of the variables ¢, B, and { can now be found.
Assume, for instance, that

B ==B, cos (pt | ¢). (780)
It then follows that

B=VYVi+¥;,

oosc=———Y-L-—- sine = Yy (781)

Vrien Ve

Similar formulas can be obtained also for ¢ and i.

If the value of B, differs considerably from B, obtained from (753) and
(760), B, is substituted for B, in the second of equations (772) and the calcu-
lation repeated.

The terms containing L, M,, I, and @ in the determinants (775) —(778)
and the term containing B in the determinant (778), can be neglected with-
out greatly reducing the accuracy of the calculations, as will be shown in
an example, The following approximate formulas for ¢, and B, are then
obtained:

: 4gRM )
20 — L]
¢ = -ﬂ—’,—,———"—— b | o, (782)
BVY(RiCy + (¢RpHP

pl'—"—:]‘ | T (783)
For M,=0, (782) becomes (765), while (783) is similar to (753).
Numerical example. Let
I=:I€r+21.o+2A+j’9=5kgmsecz; j =100;
B:=0.05kgm sec?; 8=2.5-10" kgm sec?;
H=10 kgm sec; M,=0.0kgm; M,#0.00i kgm;
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C=0.50vsec;p=10v; R=10Q; ; L=0.1h;
0,==0.2 (~ 12°); g=9.8m/sec?;
p=0.6sec™! (period of roil10.47sec).
The amplitudes of the forced oscillations obtained assuming that

M,=M,=0, i.e., by (760) and (753), are

o =0, ‘:_‘%3,_0 001174 (4),

Bo= g $o==0.391 (22° 25

By (756)
a=jpC — EEUENPO _350_0.00107;

b= _"L+_”Z.°.P1'_’!_=o.1783;

c—p,c+""‘(— p’I)———300+236 —3333;
d=— fg 1)——3920

The phase shift angle 8 is found using (758):
3=229°45.
If it is assumed, in accordance with (742), that
=10, cos (pt }-8)=0.2 cos (pt |- 229°45),
then by (751) and (752)

$ = ¢, cos pt =0.001174 cos pt,
B =P, sin pt =0.391 sin pt.

The approximate formulas (764) and (765) give the following values

for ¢g:
- (7 + 1) 8p%R
princs 4 [ LT O0%R
%=°.]/ —v "‘M,I=o.oouss,
or (P’c“ pB) +( JCB

Jo= ——LLCB____ g —0.001165.
HVY(p/C)3 + (gRpHP

To allow for Coulomb friction in the suspension we must use (775) —(778).
In a first approximation for B4=0.391, these become:

~pt] ipH - _];C_
AM =
—tpH —p'B +1 55t 0 [mA=—3%0+13l
pjC M R+ipL
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f “:‘ —j(i+1)0p%  1pH —%
0 —P’B+‘4T’;."’ o |F— 0116 — 106868
1pjCly n R+ tpL
—1 e jinepn, I8
—ipH 0 0 |=m—222—1132
tpiC tpiCl R4-tpL

X = — 0.000720 4 0.00125; Y ==0.361 4 i 0.305.
Furthermore, by (779),

¢ ==—0.000720 cos pt — 0.00125 sin pt,

p=0.361 cos pt — 0.305 sin pt.

When Coulomb friction is allowed for in the suspension, the amplitudes
in a first approximation are:

4, =0.00144, B,=0.473.

These values differ only little from ¢, and B,, and a second approximation
is therefore unnecessary.
The approximate formulas (782) and (783) give

$, =0.00141, B,=0.470.

Similar calculations for the current intensity ¢ in the armature circuit
of the stabilizing motor lead to the following result:

{ = — 0.357 cos pt — 0.301 sin pt.

§ 4. Behavior of a directional gyro on
a rolling base

Approximate solutions such as those given above, based on the assump-
tion that the motion of the gyroscopic system is harmonic, are often insuffici-
ent. In such cases it is customary to use successive approximations, based
on treating the separate terms of the differential equations describing the
given gyroscopic system as external forces. The laws of variation of these
forces with time gain in accuracy with each subsequent approximation,
From the mathematical point of view this method represents a variant of the
small-parameter rnethod.

Since as a rule far-reaching simplifying assumptions are made when set-
ting up the differential equations of motion of the system, the question of the
convergence of the successive approximations has hardly any meaning. In
particular, there is no sense in continuing with further approximations when
the difference between successive solutions lies within the limits of the ac-
curacy with which the coefficients of the differential equations or the func-
tional expressions of physical laws (friction, virtual forces, etc) appear-
ing in these equations have been given.
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The suitability of the approximate solutions is usually determined by
comparing them with the results of corresponding measurements on gyro-
scopic devices operating under laboratory conditions.

The method of successive approximations is used in this section to in-
vestigate the causes of azimuthal motion of a directional gyro assembled

as shown in Figure 168. This motion was so large when this

particular directional gyro was tested on a rolling base that
D it became necessary to abandon the design. It will be shown

below that a satisfactory performance can only be expected

from such a device if the axis of the gyro's outer gimbal

ring is stabilized in the vertical direction.

We set up the equations of motion of the directional gyro,

assuming that the base on which it is mounted rolls about the
° horizontal axis § of the fixed coordinate system Ev{, and that
a corrective moment of constant magnitude is applied to the
pivot axis of the outer ring by an electric motor D, The

y sign of the moment is determined by the position of the cor-
g rective pendulum M mounted on the gyro housing (Figure 168).

d The Earth's rotation will be neglected, since the apparent
motion of the directional gyro produced by the vertical com-
ponent of its angular velocity can be made to vanish by means
of a special weight secured to the gyro housing. The moment
about the gyro-housing axis due to this weight must be such as to make the
angular velocity of precession about the outer-ring pivot axis caused by the
weight equal to the vertical component of the Earth's angular velocity. The
horizontal component of this velocity can be neglected since it is small
compared with the angular velocities relative to the Earth of the base, the
outer ring, and the gyro housing. The angular velocity of the housing is
mainly determined by the torque of the stabilization motor, the inertia of
its rotor, and the friction in the bearings of the outer-ring pivots,

Fix a moving coordinate system 9T to the base of the device (Figure
169) in such a way that the ¥-axis passes through the center of the gyro
gimbals and is parallel to the §-axis about which the base rolls, the {-axis
being parallel to the outer-ring pivot axis ¢. The vertical {-axis of the
fixed system {x and the {;-axis of the auxiliary system §&mb; lie in the
"rolling plane' 4/{; the §,-axis of the auxiliary system is horizontal and co-
incides with the ¥-axis.

Let ¢ denote the angle which the base plane makes with the horizontal
plane (¢ is the angle formed by the U-axis with the vertical axis {, of the
§im, coordinate system moving translationally). Fix a coordinate system
Z'y’7 to the outer ring of the gyro in such a way that the #-axis is parallel
to the gyro housing axis and the #z'-axis parallel to the outer-ring pivot axis
(as already mentioned above).

Let 0 be the angle between the #- and ¥-axes (Figure 169). For $=0
the angle 8 defines the gyro position in azimuth.

The velocity of the coordinate system 2y’z can be considered to consist

FIGURE 168

of an angular velocity —:—f— relative to the 9T’ system and an angular velocity
%i:- jointly with this latter system. Since the vector of angular velocity .:_:

is directed along the {'-axis (parallel to the 2'-axis), and that of % along the
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V'-axis (Figure 169), the projections on its axes of the total angular velocity
of the r'y'? system are respectively

%coso, ——%—sino. %:— (784)

Fix now a coordinate system zyz to the gyro housing, with y-axis parallel
to the rotor's axis of rotation and in the direction of the angular momentum
vector H, the z-axis being parallel to the #’-axis (Figure 170). Let ¢ (Fig-
ure 170) denote the angle between the y- and y-axes, thus defining the tilt-
ing of the housing relative to the outer ring. The absolute angular velocity

&' &

FIGURE 169

of the gyro housing is equal to the geometric sum of the absolute angular
velocity of the coordinate system Z'y’Z and the angular velocity —:—:— of the

housing relative to this system, whose vector is directed along the Z-axis
which coincides with the 2-axis. The projections of the angular velocity
of the system z'y’z’ on the axes z, y, and 2 are equal to the sums of the
projections on these axes of the components directed along the axes Z, v,
and 7 (Figure 170). These sums are respectively

-g“-'-oosﬂ, ——‘:—fsin0m9+-;—:-sin9.

dy _. . daé
d—?smﬂsmq—l——‘T cO5 §.

(785)

It follows that the projections of the angular velocity of the coordinate
system zysz on its own axes are

d 4
p=-greost+-3t.
q=—:—fsinicosq+-—:—:-sin9. (786)
r =%sinﬂsin9+%‘.—m9.

Since the angular momentum H of the gyro rotor is of constant magnitude
and its vector is directed along the y-axis, the projections of the velocity of
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its vertex on the axes #z, y, and 3 (Figure 171) are respectively
—rH, 0, pAH. (787)

These projections are equal (cf. Chapter IV, § 1) to the sums of the
moments about the corresponding axes due to the forces acting on the gyro
housing., The moments about the z-axis are due to friction in the bearings
of the housing spindle. This friction being very small, it can be assumed
with an accuracy sufficient for our investigations that

——rH=——(%—sinﬂsin7+%cos 7)H=0, (788)
whence
j‘:——_- —%sinﬂtgv. (789)

Let N be the sum of the moments about the z-axis due to the forces ap-
plied to the gyro housing by the outer ring. It follows that

pH=(5tcos8+ 31 H=N. (190)

Let N’ denote the sum of the moments about the 2/-axis due to all the
forces except the housing reaction acting on the outer ring. When the

z
d -
221 0 P
y'
I'r
FIGURE 170 FIGURE 171

inertia of this ring is neglected, it is found that the sum of the moments
about the z'-axis due to the forces actingonthe ring (Figure 172) is zero.

N'—N cosg =0. (791)

The moment V' consists mainly of the moments due to inertia of the
rotating parts linked kinematically with the ring (stabilization motor rotor,
follow-up system pick-up, etc) and friction in the bearings of these parts
(referred to the outer-ring pivot axis), and also the stabilizing moment
exerted by the stabilization motor:

d L]

where I is the moment of inertia of the whole system about the outer ring
axis, F is the moment due to friction, and K is the stabilizing moment
whose sign depends on the position of the corrective pendulum fixed to the
gyro housing.
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Assuming ¢ to be small, the following approximation is true:
N =N, (793)
so that by (790),
¥ d
(St cost + S2)B=—133 —Fsigng £ K. (794)

We introduce the notation
1 F K
¢=T, P=T, V=—§-. (795)
The following two differential equations describing the motion of the direc-
tional gyro are then obtained from (789) and (794):

do
= —!isinﬂtgqa,

+ cosO=—am —psign — d: + v (796)

The corrective pendulum is mounted in such a way that the moment
exerted by the stabilization motor when the base is immobile and the rotor
axis not horizontal, tends to restore the rotor axis to the horizontal posi-
tion. In particular, on a horizontal base ($=0), the sign of v in the second
of equations (796) must be opposite to the sign of ¢. For instance if $>0,
the left-hand contacts of the corrective pendulum are closed (Figure 172);

—7

FIGURE 172 FIGURE 173

when the friction in the outer-ring pivot bearings is neglected, (796)
becomes

de (797)

During rolling, the pendulum will close its contacts alternately, de-
pending on the direction of the inertia forces due to the translational motion
of the instrument.
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It is easily seen (Figure 173) that when .
=
__._’z£<o<_2., (798)

the inertia forces due to translational motion are directed to the left when
$ >0 (Figure 173), if the gyro housing is viewed from the positive §-axis,
and if it is assumed that rolling obeys the law

¢ = ¢, sin pt, (799)

where ¢, is the amplitude of rolling, and p its frequency.

In fact, in this case the projection of the translational acceleration on
the m-axis is positive. The projection of the inertia force, on the other
hand, is negative. It follows that when ¢ >0 and ¢ is small, the pendulum
will press mainly against the left contact, so that the sign of v in (796) must
be negative. When rolling takes place, the equations of motion (796) of the
directional gyro must be written in the form

do d
—‘—‘-=—?1‘Lsin0tgv.

800
:—I-{-:—:’cosO:—a%—pstgn:‘—.—nlgnqa. (800}
where ¢ is defined by (799) and 8 is within the limits given by (798).

It is very difficult to solve these equations accurately. Accordingly,
the influence of each of the terms on the right-hand side of the second
equation on the azimuthal motion of the gyro will be analyzed approximately
and independently of the other terms: only the influence of inertia forces

(—ag), friction (—p sign —:‘1) or the corrective pendulum (—vsign$) will be

taken into account.
Since the angle 8 changes comparatively slowly, the functions sin® and

cos B in (800) can be considered as constants in the calculation of %:— and %:

In addition, the expression
tge=e, (801)

can be inserted into these equations since ¢ is small, and all terms after
the first in the Fourier series for sign¢ [cf. (769)],

sign ¢ = sign (§,sin pt)=% sin pt + ;—‘sin 3pt+4... (802)
can be neglected.

It follows from (800) and from the assumptions just made that the follow-
ing differential equations account for the influence of the corrective pendulum

only:
o a4
= —gr 75inb,
d L2 R
T:-+%coso=——:—smpt. (803)

The approximate integration of the second of equations (803) (assuming
6 = const) gives

7=a+:—;cospt—¢ooso. (804)
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As first approximation we neglect the term —a %—; Integrating the second,

of equations (809) yields

p=a—¢cos0. (810)
Inserting this expression into the first of equations (809) leads to
%:—% (a2 — ¢ cos ) sin 0. (811)

As second approximation the term —a% is retained in the second of

equations (809), Using (811), integration yields
p=—a—¢ cos O—a—‘;%—_—
dy .
=a—¢cos0-}a—- (e —¢pcosb) sinb. (812)

Inserting this expression into the first of equations (809) gives the second

. . a0
approximation for 9"

:—::—%g'-sin0(¢—Qcoso+a%?—usin—ada%sinOcose). (813)

Substituting the expression {,sin pt for ¢, the following equation is then

(4
(]

L

X’
-0

lw

FIGURE 175

obtained for the angular velocity of deviation in azimuth of the outer gimbal
ring:
% = — p},a sin 0 cos pt  p¢? cos 8 sin 8 cos pt sin pt —
— ap*¢2a sin?0 cos® pt -} ap*}3 cos® pt sin pt cos 0 sin?6, (814)

which can be reduced to

-3%: — pY,a sin 8 cos pt - %p‘{i: cos 0 sin 8 sin 2pt -}-

-+ % P} cos 0 sin? 6 (sin pt 4-sin 3pt) —
——% PYla sin’OcosZpt—% pYla sin®6. (815)

All terms in (815) except the last are periodic functions of time and
do not therefore influence the continuous deviation in azimuth of the gyro.
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The integration constant a is equal to the mean value of the angle between
the gyro-rotor axis and the horizontal plane, and also, by virtue of (799),
to the mean value of ¢.

Inserting (804) into the first of equations (803) gives

%_—;_.‘:—“:—(a—}——é;—cospt—*cosO)sin., (805)
which by virtue of (799) is transformed into
%:— = — pay, cos pt sin § 1 py§ cos pt sin pt cos 0 sin 6 —
-——:—:— ¢, cos® ptsin 6, (806)
or,
%:— = — pay, sin 0 cos pt 4 —:— py? sin 20 sin 2pt —

——i—v—qa.sinOcos Zpt-——iv—?.sinl (807)

The first three terms on the right-hand side of (807) define a periodic
variation of § while the base rolls. The last term defines a continuous
azimuthal deviation of the gyro at an angular velocity

— E:—qa,sin 0. (808)

If the leads of the pendulum contacts are reversed, the gyro's deviation
in azimuth must change direction. This has been confirmed experimentally.

FIGURE 174

Figure 174 shows the motion in azimuth of the gyro in different quadrants
under the influence of the stabilization motor, controlled by the corrective
pendulum. The rotor axis tends by the shortest path to attain the rolling plane
#¥ perpendicular to the §-axis about which the gyro base rolls.

Consider now the influence of inertia on the azimuthal motion when the

outer gimbal ring tilts about its axis. Replacing the term —i’:'-sin pt in the

second of equations (803) by —ag—:— we obtain

a b

—‘T— ——quiBO, (809)
dp , b . dn
ar T g oost=—egz.
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This motion is determined by the last term alone, i.e.,
— 3 P*Jiasin’e. (816)

The gyro's deviation in azimuth during rolling, caused by the inertia of
the outer gimbal ring, is shown in Figure 175 (a>>0).

It remains to investigate the influence of friction in the outer-ring pivot
bearings on the azimuthal motion of the gyro.

The relevant differential equations are

= ——d—? ¢sin8,
(817)
ay dyp o
3¢ C0s 0= —psigng .

If instead of the Coulomb friction in (817) we substitute viscous friction
characterized by a suitable viscosity coefficient 4 we can expect that the
results will not be altered significantly. The following equations will there-
fore be considered:

do d
w= ——d% ¢sinf,

(818)
dp dy __ a0
oot gr=—15.
As a first approximation neglect the influence of friction on the gyro

motion, and assume, as before, that & is a slowly varying function of
time. An expression identical with (810) is then obtained:

9=¢—-qacose.

Using it, we again obtain (811)

=—3t (a—¢cost)sin®.

Integrating this expression under the assumption § = const yields
. 1 .
8= —a}sin 04 ¢*sinbcos 8B, (819)

where B is a constant.
The following expression is obtained from (818) and (819) as a second
approximation:

9_—_—a—-q;coso—-q0=a-—qacose+na¢sin0—-

— - 7¢*sinfcos, (820)
so that
do d
=——%‘f—sinﬂ(a—-'{ccosﬁ-[—nwsinﬁ—%nqa’sinecosO). (821)

Inserting (799) finally reduces this expression to the form

do

ar = — P, sin b cos pt+—’2—pqa:(sinﬂcos 0 — na sin®6) sin 2pt -

+ % 1p$; sin* 0 cos 8 (cos pt — cos 3pt). (822)
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All terms on the right-hand side of this expression are periodic func-
tions of time whose mean values are zero.

It follows that friction does not cause the deviation in azimuth of the
directional gyro during rolling. The main causes of this deviation are the
influence of inertia when the outer gimbal ring is tilted relative to the
instrument body, and the moment applied to the outer ring by the stabiliza-
tion motor when the latter is controlled by the corrective pendulum.

It can be shown that although the problem is nonlinear, the total angular
velocity of deviation in azimuth of the directional gyro is approximately

—g=——;-p’¢;asin’0—z—:q).sin0. (823)

It follows that the angular velocity of deviation is zero when §=0 and
0=nx, i.e., when the angular momentum vector is perpendicular to the
axis of roll §. For other values of 9 the second term is either added to,
or subtracted from the first. It may therefore happen that the angular
velocity of gyro deviation is excessive, or that it is almost zero. This is
the main reason why this design was abandoned.

Numerical example. Assume that

R

H=>500000 gcm sec; I=25000gcm sec?; K=5000gcm;
$o=0.2 (~12°); a=0.05 (~3°);
0 —90°; p=1.Osec’1.

In this case

a=%=0.053ec; v=%—=0.01sec'1;

7 P*$7a sin?8=0.00005sec™* = 0.17%/min;
2 ¢, 5in8=0.001275 sec "' < 4.33% min.

The calculated values of the deviations of the directional gyros are near
to the experimental results,

It follows that the directional gyro must either be mounted on a stabilized
base, or the parameter a (which characterizes the moment of inertia of the
outer gimbal ring and the parts linked kinematically to it) and the corrective
coefficient v considerably reduced.

Designs of directional gyros exist in which the stabilization motor is
controlled by a special contact device connected with the housing spindle
(Figure 191). In this case the motor develops a torque moment of such a
sign that the gyro precession caused by it tends to move the axis of the gyro
rotor into a position perpendicular to the plane of the outer gimbal ring. It
can be shown that in this case the behavior of the directional gyro is similar
to that of a double-gyro frame used as gyro azimuth. The need to stabilize
the vertical axis of the frame suspension in order to avoid large deviations
in azimuth due to the so-called additional solid angle was indicated in
Chapter II, §4. The same will obviously be true for a similar monogyro
gyroazimuth design.
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It is easily seen that when rolling is not excessive

—v_.
=% (825)

where w is the horizontal component of the acceleration of the point at
which the instrument is located (caused by the shiproll), and g, the gravita-
tional acceleration*, Assume that

—:;.—_asin(pt+a)+psin(qt+-). (826)

This is the case of complex rolling, in which the motion of the dynamic
vertical represents the superposition of two periodic oscillations of dif-
ferent frequencies p and ¢, usually with different amplitudes a and B and
phase angles 8 and s.

For most instruments the functional relationship K (1) has the form shown
in Figure 176,

The region of linearity, —7,<<y<(1;, in which the corrective moment K
is proportional to y, is usually small, vanishing in certain instruments.
We shall therefore assume that the corrective moment is under a so-called
contact control, defined by

: K(1)=K,signy, (827)
i.e.,
K=—K,, for 1<0
and E—=+4K, for 1>0. (828)
Introduce the notation
Ucos p=p, (829)
%‘—=v. (830)
w
t=7 (831)

Using also (825) and (827), equation (824) can be written in the following
form: d

ﬁ:p-}-v:ign(E—z). (832)
An elementary analysis of (832) was given by Zaitsev for simple rolling,

defined by .
t==asin pt. (833)

The large errors predicted by the theory were confirmed by experiments
made by Zaitsev under laboratory conditions.

Great difficulties arise when applying Zaitsev's method to the solution of
equation (832) in the case of complex rolling. The problem is therefore
approached in this section in a quite different way, applying probability
considerations. A remarkable result of the theory confirmed by tests of
a gyrohorizon under operating conditions, is that the errors during complex
rolling are much smaller than the errors during simple rolling of the same
amplitude.

Consider first the elementary solution of (832) [by Zaitsev's method].
Plot a curve corresponding to equation (833) (Figure 177). Let the value

* More exactly, 7==arclg - z, where w’ is the vertical component of this acceleration,

w
§—w
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Chapter VI
VARIOUS PROBLEMS IN GYRO-SYSTEM MECHANICS

§ 1. Application of probability methods to determining the
errors of a gyrohorizon with contact correction
during rolling

The orientation in space of gyro axes may change due to various factors,
e.g., friction in the suspension, inertia, the Earth's rotation, imbalance,
etc (see Chapter IV). When gyros are used to stabilize a horizontal plane
on a rolling ship (or any other moving object), it becomes necessary to apply
suitable corrective moments in order to return them to their initial position.
These corrective moments are created by devices reacting to changes in
the direction of the dynamic vertical to the ship's deck?.

The rolling and pitching of the ship cause a continuous change in the
direction of the dynamic vertical, and therefore a continuous variation of
the gyros' orientation through the action of the corrective moments. This
leads to errors in the determination of the horizontal plane.

In order not to complicate the analysis, we assume that only rolling oc-
curs with zero yaw and pitch, and that the ship does not turn. The apparent
motion of the gyros will then be due to the angular velocity of the Earth and
to the action of the corrective moments. The influence of the angular veloc-
ity of the ship due to its motion along the curved surface of Earth can usually
be ignored.

Let the gyrohorizon consist of only one gyro with a vertically oriented
vector of angular momentum**, and let the axes of its gimbals be respec-
tively parallel to the longitudinal and transversal axes of the ship. Denote
by z the angle of deviation of the gyro's angular momentum vector from the
[true] vertical to port in the transverse plane of the ship, and assume that
the ship's bow points in the north-south direction. The gyro motion will
then be described by the equation

d:
H(g - Ucos 9)=K (1). (824)

Here U is the angular velocity of Earth; ¢, the local latitude; K (y), the
magnitude of the corrective moment; and y, the angle between the dynamic
vertical at the point where the instrument is located and the angular mo-
mentum vector H of the gyro rotor,
* The dynamic vertical is the direction of the geometric sum of the gravitational acceleration vector
and a vector equal and opposite in sign to the translational acceleration vector of the point at which the
instrument is located. It is the direction of a pendulum whose period of natural oscillations is smalil
compared with the period of the ship's roll,
** Different gyrohorizon designs are analyzed in the same way.
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of.z for t=0 be z,>0 (different initial conditions are treated in the same
way). In this case z will be greater than £ at t==0 and for a certain time
after this, and therefcre

t—z <0. (834)
It follows then from (832) that
d:
GF=p—v (835)
Integrating (835), we have
=z —(v—p)t. (836)

This equation is represented in Figure 177 by the straight line AB. It is
easily seen that a condition necessary for the proper functioning of the

instrument is
y>p; (837)

this means that the corrective moment K, must be sufficiently large,

] ) Ez

|"*‘
ap——2
-~
1

FIGURE 176 FIGURE 177

The line (836) intersects the curve (833) at point B at which the angle
{=f—2z (838)

becomes zero, and then changes its sign.
From that point on z will vary (as seen from (832)) according to the law:

S=p+v (839)

The integral of this equation is represented in Figure 177 by the straight
line BC having a positive slope. Point C corresponds to the next change
in sign of the angle y; the variation of z after this point will again be given
by (835), etc.

The function z=gz(t) is thus represented by the broken line ABCDE...,
whose break points lie on the sinusoid (833), and whose slope is alternately
positive and negative, depending upon whether it lies below or above the
sinusoid. If point B lies near the maximum of sinusoid (833), it may happen

that at this point at
ar <p-+v. (840)

An analysis similar to that in Chapter V, §1 shows that the line BC must in
this case be replaced by part of the smusmd the position of point € being
determined by the equation

dg
F=e— (841)
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The function z=z (f) beyond this point is as given above. This plotting |
method can obviously be used for any shape of the curve §==£§(t), including
the case of complex rolling according to (826); in the latter case, however,
it is difficult to draw conclusions on the position of the broken line parts.
For a sinusoid the solution of the problem is simple, since it is obvious
that the broken line rapidly becomes a periodic function whose period equals
that of the sinusoid (833).
Consider three consecutive break points of the line (Figure 178). Let
t,, l;. ty be the abscissae and z;, Z,, I3 the ordinates of these points. It
follows from (839) and (835) that

Te— 4 __
I Tn
1 —P v. (843)
Because of the periodicity,
Ty=21,, (844)
2%
t,—ty=—. 845
s—h= £845)
Lastly, since the break points lie onthe sinusoid (833):
z,=uasinpt,;, (846)
z,=—usin pt,. (847)
Iy I’: i3]
t, ¢, \/ t; \
FIGURE 178

Relationships (842)—(847) form a system of six equations with six un-
knowns, these being the coordinates of the three break points. Equation
(842) can be written

(s — )= (p + v (ty— t)- (848)
Eliminating zy and #y from (843) by means of (844) and (845) yields:
2
(B—z)=0—p (5+t—h). (849)
It follows from (848) and (849) that
plty—t)="Ttr, 650
and therefore
y!_';z
Ty — = =. (851)

On the other hand, by (846), (847), and (850),

v
z,— 1z, =2a cos(

—_—p . VB
% ﬂ—{—ptl)sm 7 (852)
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Thus, by (851) and (852):

f:ﬁn=2ucos(v
[ a4

St pt)sin "5 @53

from which ¢; can be determined.
Of particular interest is the mean deviation of the gyro axis from the
[true] vertical:

—a+=
5, =-z-t. (854)
It follows from (846) and (847) that
z,y==asinp ’+ 2 cos p ";" . (855)

Inserting (850) this expression becomes

n-{—pt,)cos ot (856)

z,,=asin (V;P

It follows from (853) that

sm(—-n-{-—ptl QU D \ el o LI L (857)
2pv¢sm—!-—n

so that (856) becomes

1— (858)

JCET N
2pva sin s]

If p=0, i.e., if the influence of the Earth's rotation on the instrument
is eliminated in some way (for instance, by a compensating moment), (858)
shows, as was to be expected, that

z,,=0. (859)

As is easily seen from(830), v represents the angular velocity of the
correction; it is usually considerably larger than the horizontal component
p of the Earth's angular velocity. The following approximations can there-

fore be employed:
—p px  px

cos 2 r=—sin 5 =5 (860)
N et pE
sin ——n=cos 5-=x1. (861)

Inserting (860) and (861) into (858) and neglecting p? small compared with

¥, yields:
_ap T v
=37 V1—(2) - (862)

The product pa represents the angular velocity with which the dynamic
vertical deviates frora the true vertical. This velocity is much larger than
the angular velocity v of the correction., The radical in (862) can therefore
be replaced by unity. This leads to the following approximate formula first
derived by Zaitsev:
fap

v

'—;—‘0 (863)

~
Ty =
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The following numerical example will show how large the mean deviation
of the angular momentum vector from the vertical can become during
rolling. Assume that
-'i—:asinpt, a=0.4, p=1.0sec-!,

p =10 ‘/min, v=100 //min,
It follows then from (863) that

z, =% . 3-=0.0157 (54),

v

which represents a considerable error in the instrument indication. The
exact formula (858) gives

z,,= 0.01564.

The second method of investigation is based on the assumption that the
range of variation of z is small compared with the corresponding range of
variation of £. In other words, it is assumed that during simple or complex
rolling the deviation from the verticalof the angular momentum vector varies
negligibly compared with the range deviation of the dynamic vertical. This
is true for time intervals of the order of the roll period.

Integrating the equation (832), i.e.,

%—:-.—_—p-{—vsign(i—z),

from t=0 to t=T yields
b 4
i(_TL;_’“D=p+_;_jszgn(e~z)d:. (864)
[ ]

The left-hand side of (864) can be neglected for sufficiently large values
of T. For a steady periodic motion of the gyroscopic instrument during
simple rolling of the ship, the left-hand side of (864) vanishes if T is the
period of roll. Thus

r
2+ sign(t—=)de=0. (865)
[}

The magnitude z in the integrand of (865) can be considered as constant
in accordance with the above assumption so that

r
[ sign(¢—2)dt=T1,—T,, (866)
[}

where T, is the sum of the time intervals during which the curve E=¢E(2) lies
below the line f=z=const, and T, is the sum of the time intervals during
which the reverse is true.
For complex rolling characterized by an equation of the type of (826),
it can be expected that
lim D2Te — (), (867)

>

where f(z) is a function depending on the specific form of (831) for the
function §==§(t).
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In order to solve this problem under the above assumptions, it is sufficient
to find the limit of Tq: T when T — o, T, being as above, the sum of the time -
intervals during which £(t) >z (see p. 226).

If p and ¢ are incommensurable, {(t) can be considered as the sum of two
random independent variables*:

7 (t)=asin (pt+38) and ((t)=Psin (gt} s). (877)
The probability that q will lie in the interval (v, n-4-dn) is
1__4 (878)

T Vit
In fact, (878) represents the fraction of the period during which a point
whose motion is given by

n=asin (pt+3), (879)
is situated in the interval (4, 74 d7), since differentiating (879) yields:
dn== pa cos (pt + 3) dt = Va*— 7* pdt, (880)
" dt=—2D (881)
pYai—vt '

where dt is the time taken by the point to pass through the interval dv.
During one period the point passes twice through this interval. The fraction
of the period during which it is within the interval dq is therefore

2dt dy
I Ve (882)
P
Similarly, for the random magnitude {(¢) the probability is
1 dg
V=@ - (883)

The probability that 4 and { will simultaneously lie within the specified
intervals (v, 14dv), (€, C4d0)is
LA . S— (884)
Ve —7) (B -0
To find for what part of a sufficiently long time interval T, % and { re-
main within a given region § (Figure 180), this expression must be inte-
grated over the region S: I N dnde ' 885)
ST e m -
In our case the region of compatible values of 4 and { in the 1% plane is
a rectangle with vertexes (ta, £B). It is easily seen that

4o 48

1 .. . Sy
™ .I. 3 V=Pt =1 (886)

this was to be expected. Compatible values of 7 and { are impossible out-
side this region. The condition
¥ (887)

* Gredenko, B.V. Kurs teorii veroyatnostei(A Course in the Theory of Probability). — Fizmatgiz. 1961.
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‘It follows from (865)—(867) that
=t
@)= (868)

The roots of this equation have to be found in order to solve the problem.
In the case of simple rolling according to (833),

E=ua sin pt,
it can be assumed, as already mentioned, that I is equal to the roll period:
2z
= (869)

On the diagram of the sinusoid (833) draw a straight line parallel to the
abscissa and at a distance z, above it (Figure 179)., It is immediately seen
that

T
Ty=—7—2,
T 70
T1=T+2‘xr (870)
so that T —T 42 2pt
1 2, _ % __ 4
== (871)
3
%2 I

|

Ly
f 0t ?T\/T \t

FIGURE 179

Here t, is the least root of the equation

a sin pt = z,. (872)
When z, is small compared with a, (872) canbe replaced by the approximation
z R ~
< =sinpt = pty (873)
whence
r,~—r 2z
Ha—t= (874)

The following relationship is obtained from (865), (866), and (874):
£ i =0.

v

(875)

This again leads to (863).
Consider now the case of complex rolling, for which the deviation of
the dynamic vertical from the true vertical is given by (826):

E(t):%:asin(pt—{—a)-l-ﬁsm(9‘+‘)- (876)
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corresponds to that part of the rectangle (Figure 181) to the right and

above the straight line
nl=z, (888)

The ratio T3: T which we shall denote by f,(z), thus represents a double
integral over this region.
For 2> 0 the region §>>z may be either triangular or trapezoidal, de-

pending upon whether a —B is larger or smaller than z. For a =24 the
region can only be triangular. Usually the region is trapezoidal; only this

¢

lfl A\

= \3 = 7 b A§\¢ L]
; &

FIGURE 18C FIGURE 181

case will therefore be discussed. Let us assume that a>pB. In this case{
has to be integrated from —f to B, and 5 from z—¢ to a. Therefore

+$ 3
. 1 d at
}L‘g—,"‘=fz(z)=,;—g__[ [ I(T——l_y!}ﬁ . (889)

The value of the indefinite inner integral is arcsin % Therefore

+»
LTy 1 f(® o og—C\  db
1]-22—7'—_"’ _! ( 5 — arcsin — )_—_Vﬁtf'-“
+#
1 1 RE T 4 dg
_-f—ﬁ—.!arcsm——ﬁ. (890)
Since
T,=T—T, (891)
it follows that
]
tim D27 i (1—208) = 2 Taresin 258 & (gp)
T T+ T nt kA « vp—g.
Inserting (892) and (868) into (867) gives
+8
. — d
%Iarcsxn"c—f.F-:-’:—, (893)
—
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which by the substitution

{=Bsinb (894)
is reduced to the form
+5
| arcsin =— BN gp — T & (895)
a 2 v
®
-
Therefore B
T _of(F £
Z=g(+. 4). (896)

where o, being a function of two variables, can be plotted with the aid of
numerical calculations.

An approximate solution of (895) is easily obtained by assuming that
z<B. The integrand can then be replaced by the first two terms of a
Maclaurin expansion:

arcsin (——:-— B sin 0) = ——arcsin (% sin 0) +

z 1 7
+= ; =—+... (897)
1 — (£ sino)
The function arcsin ({— sin 0) being odd,
v
J' arcsin({—sin 0)d0=0, (898)
-+

so that (895) can be replaced by the following approximation:

5
a8 2
= > =L 5. (899)
N i—(—‘-sino)
3
whence
3

= -%—--——-o—p— (900)

a

£y v
k()
where K(—E—) is a complete elliptic integral of the first kind*. It is re-

markable that in the case of simple rolling (==0) (900) becomes identical
with (863). This happens because

K (O)=—. (901)

In the general case
K(E)=75[1 + B+ ]> 5 (902)

* Smimnov, V. I Kurs vysshei matematiki(A Course of Higher Mathematics). Vol. IIL Part 2. —GITTL, 1949,
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It follows that the instrument error during complex rolling, defined by
(876), is smaller than during simple harmonic rolling which is one of the
components of complex rolling.

This is probably the reason why in the case of contact correction the
gyrohorizon error on a rolling ship is smaller than is apparent from (863).
In fact, the maximum deviation during rolling of the dynamic vertical, de-
fined by (876), is e4-B. Consider now simple rolling with an amplitude
a4 B; by (863) the error will be:

z* =.‘1¢_;_ . (903)
This exceeds the value of z given by (900) by a factor
g 2+B g (L) (904)
na a

If, for instance, a =0.06 and B = 0,04, then
aif B\ __
2TK(T)_1.86,

so that in the example on p. 226 the error will be 29' instead of 54', which
was the value obtained in the case of simple rolling with an amplitude of
deviation of the dynamic vertical equal to 0,06 + 0,04,

The numerical solution of the exact equation (895) gives the following
value for the gyrohorizon error:

z=0.0077 (26°).

The approximate formula (900) is thus quite adequate.
It may be expected that complex rolling consisting of three or more
harmonic components will cause an even smaller error of the gyrohorizon.
This analysis remains valid also if the corrective moment is asymmetric
(Figure 182):
K=K, for >0,

' (905)
K= —K, for 10,
K1)
;
i r
¥
FIGURE 182
with K, K,. In this case
p::mcos?-{-———-xzzle , (906)

and therefore an error remains during rolling even when the effect of the
Earth's rotation on the instrument is fully compensated.
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§ 2. The effect of the ship's yaw on the accuracy
of the gyrohorizon readings

A plane physical pendulum whose axis is perpendicular to the ship's
diametral plane, or a physical pendulum suspended in gimbals, have a
deviation toward the ship's bow during yawing of the order of one degree.

It would therefore appear that such pendulums are unsuitable for the cor-
rection of gyrohorizons and similar instruments when the latter are located
at a considerable distance from the ship's center.

In fact this is not so. Firstly the deviation of the gyrohorizon toward the
ship's bow during yaw is incomparably smaller than the corresponding devi-
ation of the plane pendulum. Secondly, and this is most important, there
exists no deviation of the gyrohorizon if its motion is referred to a coordi-
nate frame oriented by the points of the compass, i.e., if the frame does
not participate in the ship's yaw.

To prove these two assertions consider the simplest scheme of a gyro-
horizon consisting of an astatic gyro* with a vertical axis and the scheme
of two corrective pendulums. The pendulum axes are both parallel to the
ship's deck and respectively parallel to the longitudinal and transverse sec-
tions of the ship.

In order not to complicate the problem, we shall arbitrarily assume that
heel and trim are permanently zero, so that only the effect of the ship's yaw
on the gyrohorizon has to be examined.

Assume further for the sake of simplicity that the so-called linear law of
radial correctionobtains: the moments applied tothe gyroare proportional to
the angles of deviation of the corrective pendulums from their mean position.
Thus, a deviation of the pendulum whose axis is parallel to the ship's longitudinal
section will cause a moment proportional to this deviation and acting about
the axis parallel tothe transverse section of the ship to be applied to the gyro.

Under these assumptions, small motions of the gyro about the vertical
will be described (Chapter 1V, § 1) by the following equations:

H[%—m(t)y]:K(a—z),

H[-g-+o@)z]|=K@—)

the friction in the suspension is neglected.

Here H is the angular momentum of the gyro; z and y are small angles
of deviation of the gyro axis from the vertical to starboard and toward the
bow respectively; a and B are the angles of deviation of the corresponding
corrective pendulums from the vertical; K is the so-called curvature of the
correction characteristic; o(f) is the angular velocity of yawing.

We can simplify the problem still further by assuming that the angular
velocity of yawing varies according to a harmonic law

o () = v, cos pt, (908)

and that, in addition, one of the points of the ship's longitudinal axis (the
center of yaw) has a uniform straight motion.

(907)

* A gyro is called astatic if the center of gravity of the system housing rotor coincides with the center
of the gimbals and if the center of gravity of the outer ring lies on its pivot axis.
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" If the instrument is located in the foreship near the diametral plane at
a distance Il from said point, the angles of deviation of the pendulums from
the vertical will be determined by the equations

1 d
%-}-%—a:—-ﬁ%: vorl gin pt,
ol (909)
L. R 3 £ B=——w’(t)=—-T-cos'pt,

where I, is the length of each pendulum, and a and B are assumed to be
small. Assuming that the natural oscillation frequency of the pendulum is
many times greater than the yaw frequency, the natural oscillations of the
pendulums will be neglected. We can then approximately write

a= L":i-sin pt,

0’ l’ i 2 (910)
p= ———“’—cos’pt: _—%——%&cOSZpL

The mean values of a and B, representing the mean deviations of the
pendulums to starboard and.toward the bow, are by (910)

:
a,,=0 and pav=-——;¢. (911)

Inserting (908) and (910) into (907) yields

oP
H[T—moycospt] ( 7 smpt—z)
I3 (912)
[ +w°zcospt]—- (-——-g—"cos’pt——y).
The functions z(t) and y (t), which determine the deviation of the gyro axis

from the vertical, can be obtained by solving (912},
It is easily seen that the general solution of (912) for the initial conditions

z(0)==zy y(0)=y, (913)

tends to a harmonic function of frequency p.
In fact, the general solution is the sum of the general solution of the
homogeneous system

H [% — Wy Y COS pt] =—Kz,

[ —+ wo z cos pt] =

(914)

and of a particular solution of (912),

Any solution of (914) tends to zero with increasing t. To prove this, we
multiply the second equation by i = \/—1, add itto the first, and introduce
the complex function of ¢

z(t)y==z(t)+ iy (). (915)
This yields the following differential equation:
22 4 (x4 tuy cos pt) =0 (916)
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Its integral is
-y
z(¢)=Ce~“-‘Tm", (917)

which tends to zero with increasing t, since
K
x=-5>0. (918)

It can be shown that among the particular solutions of (912) there exists
one periodic solution which will be the limit for any solution of this system.
An approximation of this periodic solution can be obtained by substituting

z =a, - a, cos pt 4-b, sin pt,
Y =¢p ¢, cos pt 4-d, sinpt,

in (912) and equating the free terms and the coefficients cos pt and sin pt on
the left- and right-hand sides (higher harmonics are neglected).

The following equations for the determination of the coefficients a,, a,,
b,, ¢s ¢, d, are then obtained:

(919)

lﬂ’
_3°Tn-cl=—Ka,; “—°2H-al=—K——2‘1-—Kc,;
pHb, — wyHcy—=—Ka,; pHA, + oHay=—Kc,; (920)
— pHa,=K X% __Kb; — pHe,=—Kd,.

4

Equations (920) can be separated into two independent systems, one of
which is homogeneous. Their solution gives

v
o} 2K . (p'+7)m

=0, & =— 3 Ay
P
f t ]
by= woP_, LS = ,
xz+(pz+_2£)m (921)
1“2
o= — - LS , ¢,=0, d,=D0.

v
(o )
Note that the second of expressions (911)
h’l
Bov=— _2%.

represents, as mentioned above, the mean deviation toward the bow of one
of the corrective pendulums caused by ship yawing according to (908).

Atthe same time, the corresponding mean deviation ¢,, of the gyro axis to-
ward the bow is, according to (921), only a fraction of B,,.

Numerical example. Letthe yaw amplitude be ¢=0.05 (3°) and the

yaw period T=6.28 sec, i.e.,, p=1 sec-!; then

©==py,cos pt=0.05cos ¢,
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and therefore

wy=0.05 sec -l

If I=50m, then
I»:
Ipavl= '—z-"“ =0.0064.
The mean deviation from the vertical of the corrective pendulum is thus
considerable (about 0.4°).
On the other hand, even with a strong correction, for which

-§-=u=o.01 sec-!,

(921) gives the practically negligible value

Iu: K2
Co==— s =-—0.00000063 (0.002"),
)
though @, is larger
a,=0.00255 (8.7).

The coefficient b, is also negligible (about 0.08'),

In this case, the gyrohorizon motion can be approximated fairly accu-
rately to periodic oscillations of the gyro axis in the ship's transverse
plane, in synchronism with the forced oscillations of the corrective pendu-
lum in the same plane,

Consider now the gyrohorizon motion in the §y{ frame oriented by the
points of the compass.

It is convenient to interpret the small angles formed by the gyro axis
with the §{ and 7{ coordinate planes as the coordinates § and m of a point G
lying on said axis, for which {=z=1 (Chapter 1V, § 1, Figure 94).

Assume for the sake of simplicity that the ship's course is along the
n-axis. Then :

t—=zcosp—ysingp,

n=zsinp}ycose,

(922)

where ¢ is the yaw angle, and z and y are the coordinates of point G in
the zy coordinate system fixed to the ship, with the z-axis directed to star-
board and the y-axis toward the bow.

The coordinate z is, with an accuracy of up to third-order infinitesimals,
equal to the angle between the gyro axis and the ship's longitudinal plane,
and the coordinate y is with the same accuracy, equal to the angle between
the gyro axis and the ship's transverse plane. The angle between the y- and
n-axes, or, which is the same, between the z- and §-axes, is the yaw angle.

Equations (907) can be written :

H(G—y-3)=Ka—a),

(923)
dy dp\ __
H(—F-l-zd—‘)_.K(P—-y),
where a
-=o(t). (924)
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Differentiating (922) with respect to time yields

&t dsx dy _. dy . 9 0s
T—TW?_—:‘—&“?—Z 3t sing—y &t P
(925)

dy _dz oo dy ey
G =g sine+ g cese+zgcosp—y g -sing.
Multiply the first of equations (923) by cos ¢, the second by —sin¢, and
add. Also multiply the first of equations (923) by sing, the second by cos g,
and add. When (922) and (925) are taken into account, the result is

%.{.K&:K(aws?—-psm‘i’)-

926)
H—z‘l—}-Kq:K(asintp—}-Bcos?). (

Equations (926) can also be obtained directly.

The natural frequency of the pendulums will, as before, be considered
considerably larger than the frequency of yawing. It is then easily seen
that

L d% o b [de¥
e=—ga b=— (@) (620
since the deviation angles of the pendulums are determined respectively
by their centrifugal and tangential accelerations during the yawing.

If the expressions

p=9poSin pf and ppy=wy (928)
are substituted in (927), we obtain (910).
Since
d de \? _. d/d
-%I—coscp——(—‘—:—) sinp=— T:-coscp),
d% . de \? __d (dy (929)
—a;,—smy-}-(T cosv_--‘—z-(—“—sintp),
inserting (927) into (926) yields
dt _ 1 d [ dy
(930)

HS 4 Kn=—KL 2 (5rsing).
System (930) consists of two independent nonhomogeneous linear equa-
tions. The solutions of the corresponding homogeneous equations tend to
zero with increasing . It is therefore sufficient to find a particular solu-
tion of each equation. If p—=¢(f) is a periodic-function given by (928), one
of the particular solutions will be periodic and can be represented as a
Fourier series. The particular solutions of the two equations (930) are:

§=a,-a;cos pt+b;sinpt{... (931)

n=c,-+¢;cos pt{-d sin pt+- ... (932)
It is easily seen that a; = c; =0. In fact, since the functions §, 4, and ¢
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are periodic,

r T
dat _ d [ dy . 2=

[5i-dt=0 and |5 (gFcose)dt=0 (T=3), (933)

[ [

and it follows from the first of equations (930) that

T
o [tdt=a;=0. (934)
[ ]

It is similarly shown that c; =0, This proves that during yawing the mean
deviation of the gyrohorizon relative to a reference frame oriented by the
points of the compass is zero.

An elementary explanation of this result can be given. The angles of
deviation @ and P of the pendulums are proportional to the corresponding
components of the absolute acceleration of the point at which the gyro-
horizon is located on the ship. A spherical pendulum suspended at this
point would have the same angles of deviation to starboard and toward the
bow provided the frequency of its natural oscillations was, as in the case
of the corrective pendulums, considerably higher than the frequency of
yawing. Since the mean deviation of the point of suspension from the center
of yaw is zero, the average acceleration, the average velocity, and the aver-
age displacement of the pendulum itself, referred to a reference frame ori-
ented by the points of the compass and having its origin in the center of yaw,
will also be zero.

On the other hand, the mean deviation of this spherical pendulum refer-
red to a moving reference frame fixed to the ship will differ from zero be-
cause of motion of this frame.

The case of uniform rotation of the stationary ship about the center of
yaw is the simplest éxample. In such a rotation the pendulum deviates by
a constant angle toward the bow; in a nonrotating frame, however, the
pendulum axis will describe a cone, and its mean position will therefore be
the true vertical.

The same is true for the gyrohorizon, which in a certain sense takes up
the above -mentioned mean position of the pendulum.

In conclusion, the exact periodic solution of (912) is

—xt—i Dginpt § xt+¢Dainpt
» j‘ ?

z4-ly=nxe f(t)dt, (935)
—00
where
lh)op . lﬂ:
f(t)==2 sin pt —t —" cos? pt.
L g
To carry out calculations with (935), it is necessary to apply the theory

of Bessel functions.

§ 3. The gyro top bow

The name top bow is given to the angle of deviation (Figure 183) of the
inner gimbal ring of the gyro suspension from its mean position at which
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the axis of the top is perpendicular to the pivot axis of the outer ring.

The top bow of a free gyro without corrective devices (except for com-
pensation of the influence of the Earth's rotation) varies inversely with its
speed. It has also been noted that the bow decreases with time during rota-
tion of the top, except when the gyro housings have no openings.

A theoretical explanation of this phenomenon is given in this chapter.

In order to simplify the investigation, the influence of friction in the gimbal
bearings (usually very small) and of the angular veloc-
ity of the Earth's rotation on the gyro will be neglected.
With a vertically disposed outer-ring pivot axis the
Earth's rotation can be neutralized by means of a
weight secured to the inner ring and by orienting the
top axis along the north-south line,

This study will remain within the framework of
the elementary theory of gyroscope precession (cf.
Chapter 1V, §1); nutations will therefore be neglected.

Let a be the angle of tilting of the outer gimbal ring
relative to its (arbitrary) initial position and Bthe top
bow (cf. above). The corresponding angular veloc-

ces da d
ities are —- and —d—g-

Fix to the inner gimbal ring a reference frame zyz,
with the z-axis oriented along the top axis and the y-

FIGURE 183 axis alongthe inner-ring pivot axis (Figure 184). Letthe
orientation of the #-axis be such that the top rotates

counterclockwise when viewed from its positive direction. Assume that
positive values of B correspond to a counterclockwise tilting of the inner ring
relative to the outer gimbal ring when viewed from the positive direction of
the y-axis. It is easily seen (Figure 184) that the projections p, g, and r of
the inner ring's angular velocity on the z-, y-, and z-axes, when the instru-
ment base is fixed, are

da . d

p=— g sinb a=7.
__da (936)
r=ggcosf.

The direction ol the angular velocity -dd—: is chosen so that the outer ring

tilts counterclockwise when viewed from the positive direction of the z-axis
if —90°<{B<C90°. IfB=0, the z-axis coincides with the outer-ring pivot
axis (.

The angular momentum vector of the gyro is, in accordance with the above,
directed along the positive z-axis. Its magnitude according to the theory of
gyroscope precession, is

H=Co, (937)

where C is the moment of inertia of the gyro top about its axis of rotation
(the z-axis) and o is the angular velocity of the top relative to the inner ring.

Let us find the projections of the time rate of change of H on the z-, y-,
and z-axes. The projection on the z-axis represents the variation of H in
magnitude and is therefore

d
67':—. (938)
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The projections on the y- and z-axes represent the change of the orienta-
tion of H together with the zyz coordinate system (i.e., together with the
inner gimbal ring). It is easily seen (Figure 185) that they are respectively

rH and —qH, (939)
as shown in Chapter 1V, § 4.
4
¢
aH 4
P
da
at rH
g A7
£
¥ Y
FIGURE 184 FIGURE 185

The angular momentumn theorem of a mechanical system states that the
components of the rate of change of H are equal to the moments M, M,
M, acting on the top about the corresponding axes. It follows therefore
from (938) and (939) that g

w
Ca=Ms
ri=M, (940)
-—qH= M.

The moment M, consists, as shown in Chapter 1V, § 4, of the sum of
the moments due to two systems of forces:

1) those originating in the inner ring, including both the torque driving
the top* and the resistance due to the inner ring. The latter includes
aerodynamic drag in addition to friction in the bearings of the top shaft;

2) the remaining aerodynamic forces not due to the inner ring.

The total moment about the top axis (the z-axis) due to the forces of the
second system opposes the top rotation. Assuming that ©>0, the moment
M, is therefore

M, =K—L, L>0, (941)

where K is the sum of moments of the forces of the first system, and L, the
sum of moments of the second system.

K is positive during acceleration and at constant speed and negative during
deceleration.

The moments M, and M, are the sums of the moments about the corres-
ponding axes, caused by the reactions in the top shaft bearings. They may
also include moments due to aerodynamic drag; these, however, canbe ignored.

* If the torque driving the top acts at the outer ring, certain changes will have to be made in the following
discussion.
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The forces which act on the inner gimbal ring originate in the top and.
the outer gimbal ring.

The sums of the moments about the z- y-, and 3-axes caused by the first
system of forces are, according to Newton's law of action and reaction,

respectively
—K, —M, —M,. (942)
The sums of the moments about these same axes caused by forces
originating in the outer gimbal ring are respectively

The moments acting on the outer ring and originating in the inner ring are
equal and of opposite signs: , , s
M, M, M. (944)

If the inertia of the inner ring is neglected in accordance with the theory
of gyroscope precession, it must be assumed that the sum of the moments
acting on the inner ring is zero:

—K — M"=0.
_My_M;=0, (945)
—M,—M,=0.
Note that
M;:O, (946)

since M’ represents the friction in the bearings of the inner-ring pivots
which is assumed to be zero.
The second of equations (945) yields therefore

M, =0. (947)
Consider now the second of equations (940). Inserting the third of equations
(936) in the left- and (947) in the right-hand side yields
rH=H%:- cosp=0, (948)

whence
@ = const. (949)

This means that the outer gimbal ring is stationary.

If the inertia of the outer ring is similarly neglected, the sum of the
moments about the {-axis (and also about the other axes) acting on this ring
must be zero. Since friction in the bearings of the ring pivots is neglected,
the equation of equilibrium of the moments about the {-axis (Figure 186) is

—M’_ sinp+ M, cosp=0. (950)

Aerodynamic drag has been neglected here,
Inserting the first and third of equations (945) into (950) gives

M,=KtgB. (951)

Since according to (941) and the first of equations (940)

K=M,4L=C3 1L, (952)
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and since according to the third of equations (940) and the second of equa-
tions (936)

M =—qH=—H—— a8

ar (953)

we may write (951) in the form
ﬂ de
—AS=(C3-+L)tgp (954)
It may be assumed that the torque during acceleration and deceleration
dw
M, =Co

considerably exceeds the moment of external drag L, so that the latter can
be neglected in (954). Using (937), we may write (954) in the form

B —Cof=—CTr 128, (955)
whence
wcosPdB 4 sinpde=d(wsinp)=0 (956)
or, integrating,
o sin B == wy sin By = const, (957)

where w, and B, are respectively the angular velocity and bow of the top
at the initial instant.

1t follows from (957) that the top bow (the angle B) varies inversely with
the angular velocity o of the top.

FIGURE 186

The instant at which the top starts rotating should not be taken as the
initial instant, since friction, which was neglected, plays an important
part at the beginning of rotation (i.e., at low angular velocities of the top),
for which the theory of gyroscope precession is not valid.

During steady rotation of the top

de

= =0- (958)

In addition, the moment of external drag (not originating in the inner gimbal
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ring) can be assumed constant. Equation (954) then becomes

B _
—H gy =Ltg}. (959)

Integrating this equation under the assumption H = const yields

z
sinB=sinBe ¥, (960)
where B, is the top bow at t=0.

It follows from (960) that the top bow must gradually decrease during
steady top rotation. For tops with completely enclosed housings L=0, so
that this phenomenon will not be observed.

The results given by (957) and (960) can be obtained far more simply by
direct application of the angular momentum theorem to the mechanical sys-
tem containing the top and the two gimbal rings. In fact, the forces of
interaction between the gimbal rings, and between the rings and the top, are

]2

&
L
Z
Z
7 B
Lo &
b
]
~ H,
1 N
H \
Bﬁ
FIGURE 187 FIGURE 188

internal forces in this system and therefore do not affect its angular mo-
mentum. If the influence of friction in the bearings of the outer-ring pivots
is neglected, the only external moment about the {-axis (Figure 187) will be
the projection of L on this axis:

M,=Lsinp. (961)

On the other hand (Figure 188), the projection of the angular momentum
vector on the {-axis is (under the assumptions of the elementary theory of
gyroscope precession),

H‘=—Hsinﬁ. (962)
The angular momentum theorem states that
L H=M (963)
dt “tT T
Inserting (961) and (962) into this equation yields
— 5 (HsinP)=LsinB. (964)

When the rate of variation of H is large, such as when the top is started
or stopped, the right-hand side of (964) can be taken as zero. Inserting
(937) into (964) leads in this case to the result given by (957).
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. The geometric meaning of this is that the projection of H on the {-axis
has a constant value. Obviously, the greater the magnitude of the vector H
(Figure 188), i.e., the greater the angular velocity o of the top, the smaller
is the angle B, i.e., the top bow.

During steady rotation of the top

H = Cwo=const. (965)

Using this expression, the integration of (964) leads to (960).

The more difficult derivation at the beginning of this section was given
in order to expose the interplay of forces in the gyro gimbals. A similar
derivation may be useful in other cases of gyroscopic systems; in particular
such a method was used for setting up the equations of motion of the heel
equalizer in Chapter 1V, § 4.

§ 4. The errors of the gyroscopic
apparent-velocity meter

This short section analyzes an instrument used on moving objects for the
measurement of the so-called apparent velocity. This analysis will illus-
trate how second-order infinitesimals are allowed for in the theory of gyro-
scopes.

¢ 'z

FIGURE 189 FIGURE 190

The instrument gyro (Figure 189) has a statical unbalance relative to the
housing axis. A torque which maintains the rotor axis perpendicular to the
plane of the outer ring is applied by means of an electric motor to the outer-
ring pivot axis. The motor is controlled by means of a contact device lo-
cated on the housing axis. The gyro has a precession about the outer-ring
pivot axis caused by gravity and the inertia of the moving object. The cor-
responding tilting angle is one of the input data of the system controlling the
object's motion.

When the instrument was tested ona stationary inclinedbase, it was found
that the constant angle between the gyro axis and the perpendicular to the
plane of the outer ring has a considerable influence on the precession period.
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This phenomenon is easily explained theoretically. Let & be the angle
of deviation of the outer-ring pivot axis 2 from the vertical {, and introduce
a coordinate system zy’Z fixed to the instrument base (Figure 190); the 2'-
axis is oriented along the z-axis of the outer gimbal ring, the #'-axis lying
in a horizontal plane perpendicular to the vertical plane containing the {-
and s'-axes.

Let a coordinate system zyz be fixed to the outer gimbal ring, the z-axis
coinciding with the Z-axis, the y-axis being directed along the pivot axis of
the gyro housing. The angle between the z- and z'-axes is denoted by ¢.
Lastly, let 8 be the angle of deviation of the gyro rotor axis from the z-
axis, i.e., from the perpendicular to the plane of the outer gimbal ring.

The precession about the outer-ring pivot axis causes a moment about
the housing axis (the y-axis) due to gravity. This moment is given by

M,:zP,—zP,, (966)

where z and 2z are the coordinates in the zyz system of the gyro's center of
gravity, and P, and P, are respectively the projections on these axes of the
force of gravity. Obviously

z—acosd and z—asin3, (967)

where @ is the distance from the gyro's center of gravity to the geometric
center of the gimbals.

To find the projections of the force of gravity on the axes z, y, z, we note
that its components along the axes 2, ¥/, 3’ are respectively (Figure 190)

0, Psind, —Pcos. (968)

The last of these is also the projection of P on the z-axis. In order to find
the projection of the force of gravity on the z-axis, it is necessary to pro-
ject on this axis its component along the y'-axis; the following expression
is then obtained:

P,—=—Psinbsine. (969)
The moment M,, given by (966), can therefore be expressed in the form
M = Pa(cos 3 cos 0 — sin 3 sin 0 sin ¢). (370)

According to the theory of gyroscope precession, the moment M, is equal
to the y-component of the rate of change of the gyro's angular momentum,
given by

Hcos’ "f . (971)

The following differential equation is obtained by equating (370) to (971):

Hcos8g—"-_—.Pa(cosbcose—sinasinesimp). (972)
Separating the variables and integrating:
_ 87 cosddy
t=Pa | sstcost—sindsmlsmy - (973)
*

The period of precession T is obtained by integrating between the limits
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=0 and ¢ =2x; this gives, for constant angles 6 and 8:

"
H dy v 2%

Pacoso 1—tgdtglsing “Pacosh 1_(;3“‘33):'

The result is a generahzatmn of the well-known formula for the preces-
sion period of a heavy top. In fact, when 8=0 (vertical axis of precession)

To=2%1, (975)

r= (974)

which is independent of 3.
For §=40, the precession period increases with 3 irrespective of its

sign, as was found experimentally.
The following series expansion can be substituted with sufficient accu-

racy into (974): . ’
—_— = +tg23tg?0 o REYYEYY
Vi— g2t igid =14 7ig'dtglox 142 8g0 (976)

The result obtained by this substitution can also be derived with the aid of
the binomial theorem:
Y]

=
————,_lg“”sm, g! [14-tg3tgBsin ¢ | (tg3tg Osin ¢)f) dp=
[ ]
=2n-}-ntg3tgth. (977)

Numerical example., Assume 0=45°and 3=0.07 (~4°); the pre-
cession period is then obtained from (974), (975), and (976):

T=(1+5 8 tg?) s =1.0026 %5 To

The error when 8 is assumed zero is thus only 0.25%.

Therefore, to ensure proper functioning of the instrument, the range of
variation of 3 should be small.

The instrument error can be similarly found when the center of gravity
of the system housing top does not lie on the axis of rotation of the top.

§ 5. Precessional oscillations of a gyroscope
acted upon by a load

Monogyro systems with a stabilizing motor (Figure 191) are widely used
for stabilizing various devices about an axis. The gyro housing of such a
system is free to rotate with minimum friction in the outer-ring bearings.
When the gyro deviates from its mean position in which the rotor axis is
perpendicular to the plane of the gimbal ring, an electric motor connected
to the gimbal-ring pivot is started by means of a contact device. The
torque developed by the motor is directed so as to cause the precession in-
duced by it to return the gyro to its mean position.

Periodic oscillations of the gyro housing relative to the gimbal ring are
observed in such gyroscopic systems. The frequency and amplitude of these
oscillations depend to a considerable extent on the so-called destabilizing or
load moment applied to the outer gimbal ring.
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The frequency is considerably less than that of the nutational oscillations
of the system, which is of the order of the angular velocity of the rotor. In
the theoretical study of such phenomena, it thus suffices to
consider the precessional oscillations within the limits of the
elementary gyroscope theory.
In addition, clearances in the transmission from the motor
to the gimbal ring, friction in the bearings of the gyro hous-
2 ing and the gimbal ring, extra currents in the contact devices,
and other secondary factors may also be neglected.
The motion of the gyro housing relative to the outer ring is
in this case given by the following differential equation:

dz
L HW:’M—K’ (978)

== where H is the angular momentum of the gyro; z is the angle
of deviation* of the gyro housing from its mean position; M
’ is the magnitude of the destabilizing moment, assumed to be
constant; and K is the torque applied to the gimbal ring by
the electric motor.
Since the motor is of the squirrel-cage type, it can be as-
sumed that the torque K varies according to a specified law [during the
transient process of switching-on]

K=19(t). (979)

The time origin t=0 corresponds to the instant at which the contact device
is triggered. The torque of the motor becomes zero when the contact is
opened if the breaking extra current is neglected.

It will be assumed that the transient process of switching-on is mainly
determined by the inductive resistance of the motor armature. In this case

FIGURE 191

?(¢)=K,(1—e_%'). (980)

where K, is the steady motor torque under short-circuit conditions, R is
the ohmic resistance, and L the self-inductance of the motor armature circuit.
When the intermediate relays and amplifiers have considerable lag times,
the function ¢ (t) will have a more complex form. This does not, however,
render the determination of the frequency and amplitude of the gyro oscilla-
tion more difficult.
According to (978), (979), and (980), the following equation will apply
during the time the contact device is closed:

_ HE=M—K (1 —e), (981)
where
a=2. (982)
Integrating (981) yields
He=—(K,— M)t -S4 c. (983)

The contact device is triggered in the mean position of the gyro housing.
It follows thatz=0 at t=0. Inserting these initial conditions into (983)

* [Apparently about the outer-ring pivot axis.]
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gives

c=5, (984)
Inserting (984) into (983) leads to
H
I r=l—ev—(—pa, (985)
where "

Equation (985) defines the gyro motion up to the instant $=¢, at which
the angle z becomes again zero. It is easily seen that the precession
period can be determined from

1™

5

—14-p=0, (987)

where
T, =at,. (988)

In fact, the motor torque becomes instantaneously zero (if the circuit-
breaking extra current is neglected) immediately after the contacts are
opened, and the gyro starts moving under the action of the destabilizing
moment M in the direction of increasing angle z. The contacts are rapidly
closed again, and the action is repeated.

An interesting fact is that the period ¢, is independent of the gyro's
angular momentum H, and is determined only by the parameters

N R
p.=—K—1 and e=.

These characterize the relative load on the motor due to the destabilizing
moment (K, is the maximum torque which the motor can develop) and the
electric properties of the armature circuit.

The maximum deviation Z, of the gyro from its initial mean position is
obtained at an instant ¢=t,, at which the speed of precession becomes zero.

The following equation is obtained from (981) for determining #y:

M—K,(1 —em)=0, (989)
whence follows, using (986),

tn=—=In(i —p) (990)

Inserting (990) into (985) gives the following expression for the maximum
deviation of the gyro:

Ta=t [ (1 —p)In (1 —p))- (991)
Table (993) gives the values of
=aty, Ta=0ly, e_=“%’z_ (992)

calculated from (990) and (991) and by nwnerical solution of (987) for differ-

ent values of p(0<p<{1). Curves representing these values are given in
Figures 192 and 193.
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B 4 . 1
0.05 0.103 0.051 0.0013
0.10 0.213 0.105 0.0052
0.20 0.464 0.223 0.0215
0.30 0.762 0.357 0.0501
0.40 1.126 0.511 0.0935 (993)
0.50 1.594 0.693 0.153
0.60 2.231 0.918 0.234
0.70 3.197 1.204 0.339
0.80 £.965 1.609 0.478
090  10.0 2.303 0.670
095 200 2.996 0.800

The following approximations are true for small values of p:

§~=%"+%"o
& (994)
n=2p+gp"

Eonoe
12
08
05
04
02

0 o5 Tia ) 35 Wt

FIGURE 192 FIGURE 193

Numerical example. Assume thatH=5000gcm sec, M =40 gcm,
K,=50 gcm, a =5 sec~!; it follows then from (986) that

M
p.=-K=0.8
and therefore, according to Table (993)

v, =4.965, =,=—1.609, ¢£,=0.478.
It follows from (992) that

Ta=21 1, 20.000056(3.3), =11 =1sec.

In the given case the gyroscopic stabilizer will undergo about one oscilla-
tion per second.
Figure 194 gives curves of the gyro motion in the §t plane for several

values of the parameter p. These curves represent to a scale of 1: -.%-

the angle z defining the deviation of the gyro from its mean position and to
the scale of 1: % the time ¢.

In the general case, in which after the closing of the contacts the motor
develops a torque according to an arbitrary law (979)

K=¢(t),
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v

the integral
]
fO=[e@dt (995)
°

has to be plotted and a straight line of slope M to be drawn through the
origin, It follows from (978), that the difference between the ordinates of
the curve and the straight line represents Hz, and is therefore at every
instant proportional to the angle of deviation of the gyro. The abscissa of
the intersection of these lines determines the period of the precessional
oscillations of the gyro.

¢

FIGURE 194

When the gyro housing is tilted in relation to the outer ring, friction in
the bearings of the housing pivots causes a precession of the gyro about the
outer-ring pivot axis. Let F be the moment due to Coulomb friction in the
housing bearings. Its direction varies together with the precessional veloc-

ity :—:- of the gyro about the outer-ring pivot axis.

It follows that the outer ring will tilt to one side by an angle

F
i (996)

in the time interval (0,t,), and to the other side by an angle

fs (‘l—'tu) (997)

in the time interval g, f;).
The expression
&y __F 2p—t; F  2m—T

F=H g T - (998)

represents the mean angular tilting velocity of the outer ring. The instants
t, and ¢, are determined by the destabilizing moment. The angular tilting
velocity of the outer ring thus depends on the load acting on the gyro (Z. M.
Tsetsior).
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§ 6. Influence of vibrations on the accuracy of
gyroscopic instrument readings

Systematic errors are sometimes observed in the indications of gyro-
scopic devices tested on a vibrating base. This contradicts the widely-
held opinion that vibrations have a positive influence on the operation of
gyroscopic instruments, since they reduce friction in the gimbals of the
sensing elements, replacing vibrating or revolving bearings frequently
used for this purpose.

It will be shown below that vibrations can greatly reduce the accuracy of
gyroscopic instruments. This is due to the elasticity of the gimbal element
and the housing cover, and to the almost unavoidable clearances in the rotor
bearings.

Due to the component of inertia forces, directed along the rotor axis,
the center of gravity of the gyro deviates periodically from the geometric
center of the gimbals; the other components cause spurious precessional
moments which lead to gyro wander.

To illustrate this phenomenon, consider the wander of a directional gyro
caused by the vibrations of its base (Figure 195),

z
) 4
# wd)
< Y
M 7
1 y
7 I
FIGURE 195 FIGURE 196

Fix to the outer gimbal ring of the gyro a coordinate system zyz (Figure
196), the z-axis lying along the ring pivot axis, the z-axis along the hous-
ing pivot axis, and the y-axis perpendicular to the two. |
Let the vibrations of the base be such that if the gimbals were absolutely
rigid their geometric center would undergo harmonic oscillations along a
straight line. This motion can be resolved into three harmonic motions
along the axes z, y, and 2. The accelerations of these component motions
are respectively
w, = —au’a cos of,
w, = —uw?bcos wt,

w,=—-u’c cos wt,

(999)

where @, d, and ¢ are the amplitudes of the component oscillation motions,
and w, the frequency.
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- These accelerations determine the inertia forces of translation:
P,=—mw,, Py,=-—mw, P,=-—mw,. (1000)

The force P, does not affect the gyro readings. The force P causes a
periodic variation of the position of therotor's center of gravity relative
to the pivot axis of the housing. If the mass of the housing and the elasticity
of its pivots are neglected, only the rigidity of the cover being taken into ac-
count*, the axial shift of the center of gravity of the rotor will be

1= beosal, (1001)
where n is the frequency of the rotor's natural oscillations in the axial di-
rection, determined by the elasticity of the housing cover (all the other
gimbal elements are assumed to be absolutely rigid and the axial clearance
to be zero). Formula (1001) follows from the differential equation of the

axial vibrations of the rotor:

m;—:—:-}-Kn:P,:mw’bcosmt. (1002)

Here m is the rotor mass and K, the spring of the housing walls together
with the rotor bearings at axial displacements of the rotor. Obviously

K =n*m. (1003)

When the rotor's center of gravity is displaced (Figure 196), a moment

4
M.=1P,= mbc ——— cos'ut, (1004)

appears due to the force P,, causing precession of the gyro about the vertical
axis at a mean angular velocity

mbe  wt
O = IH Aot ¢ (1005)

where H is the gyro's angular momentum,

The precession is in one direction for >, and in the opposite direc-
tion for n<w. This was found experimentally.

Clearances in the axial direction of the rotor bearings has a quantitative
influence on the phenomenon; essentially, however, it remains the same.

We thus see that rigid construction of the gyros and their gimbals and
proper assembly are very important for obtaining high-accuracy in gyro-
scopic systems.

§ 7. Theory of follow-up systems

Contemporary control instruments are complex systems of gyroscopic
and computing units having many additional devices; important among them
are the follow-up systems,

The function of follow -up systems is to reproduce with satisfactory ac-
curacy the angle of rotation (or the shift) indicated by an instrument (in par-
ticular gyroscopic) without applying to it forces liable to affect its readings.

* It can be shown that there is no gyro wander during vibrations when the rotor is equally elastic in the
y and g directions,
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A poorly functioning follow -up system can greatly reduce the accuracy
of gyroscopic precision systems. It is therefore necessary to analyze the
processes occuring in follow-up systems and in their components; this re-
quires a suitable mathematical theory.

Some simplifying assumptions regarding electrical and mechanical proc-
esses taking place in the follow-up system and the laws governing them have
to be made; the correctness of these assumptions has to be determined ex-
perimentally.

In spite of the extensive literature dealing with the general theory of
follow-up systems, it is useful to outline such a system (Figure 197).

-

The pick-up P feeds to the amplifier 4 a voltage ¥ which is a function of
the angle of misalignment of the system

a—0, (1006)

FIGURE 197

where ¢, is the angle of rotation of the pick-up P and §, the angle of rotation
of the load L. [Actually it is the comparator (or mixer) which feeds the
voltage.]

The voltage v obtained at the amplifier output is fed to an electric motor
M in such a way as to make the armature rotate in the direction of decreas-
ing misalignment angles.

For small misalignment angles a linear relationship between the latter
and the input voltage

u=k (e, —8), (1007)

can be assumed.
The angle of rotation of the motor armature is related to §, by the
equation
b=8, (1008)

where j is the transmission ratio (usually j > 1).
Expression (1007) can be written

u=k(p—0), (1009)
where
e=Jor K=k (1010)
The relationship between the input and output voltages can be represented

as a first approximation by the following differential equation

d
t—é—-}-u:pa, (1011)
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where v is the amplifier output voltage, t, the so-called time constant of
the amplifier, and p, the constant-voltage (static) amplification factor.
When a constant voltage u—=u, is applied to the amplifier input, a con-
stant voltage v=—uv,=pu, is obtained at its output at the end of a transient proc-
ess during which the voltage increases according to (1011) by the exponential

law -5
v=y,|1—e *). (1012)
If u varies according to the harmonic law
u=u’sin pt, (1013)
integration of (1011) will give the following law of variation for the output
voltage: .
v=1°sin (pt —e), (1014)
where o
=—-r-£‘——- ¢ = pt.
v° V= tg pr (1015)

It is thus seen that the output voltage v varies according to the same

sinusoidal law as the input voltage u, but with a time lag

t,=_;, (1016)

The time lag £, between the input and output voltages decreases with in-
creasing frequency p; the phase shift ¢ tends toward the value %—, and the

amplification toward zero. The following approximation is valid for low
frequencies p (more precisely, for small values of the product pt):

pr=tge=e (1017)

whence
ty=1, v=v"sinp(t—r). (1018)

The relationships between input and output voltages u and o in the ampli-
fiers used in practice are considerably more complex than equation (1011),
which is nevertheless sufficient in many cases involving narrow ranges of
variation of the frequencies p.

After #* and &« have been determined experimentally, the parameters p
and t can be obtained from

Lol

1
P= Cromer 1=T"8" (1019)

which follow from (1015),
If the motor M is a dc separately-excited motor, the equation of the
electric circuit of its armature is (neglecting the armature self-induction)

v=Ri+Cq, (1020)

where R is the ohmic resistance of the circuit, C, the coefficient of the
motor counter emf, and 0@ the angle of rotation of the armature.

Since the torque of a separately excited dc motor is proportional to the
armature current {, it follows that

dn c

where I is the moment of inertia of all revolving parts of the follow -up
system referred to the motor axis; N, the moment of resistance to the
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armature rotation due to the load and friction; g, the gravitational ac- °
celeration.
The resistance moment N is practically independent of the armature

angular velocity —:—:— but is determined by its sign. Ifthe pick-up P rotates

in the same direction at constant speed, load L also rotates without chang-
ing direction when the follow -up system functions smoothly. It can then be

assumed that
N =const. (1022)

Under these assumptions the operation of the follow-up system is de-
scribed by the following equations:

u=k(p —0);
do
T3 +v=pu;
s=Ri+C

a2 C
m—_‘—‘_N-

(1023)

1

The following equations are obtained by eliminating u from the first two and
the current intensity i from the last two of equations (1023):

t 5 o=kp (2 —0),

(1024)

an C2 db [

If the pick-up rotates uniformly, that is if
p=uet, (1025)

the load will rotate after attenuation of the transient process according to

the law
=004 ot. (1026)

Assume that during the transient process the load rotates without chang-
ing direction, so that (1022) remains valid.
Also assume

v=1"40, 0=ot-}P®}0, (1027)
where v® and §° are given by
P = —kp®,
Co=Lpw_NR (1028)
[ 4 [ 4

Inserting (1027) and (1025) into (1024) and using (1028):

+ 2 o=—hud,

aa_c,
g & ¢

an (1029)
RI-E,—,-{-

These equations define the time variation of # and §; these magnitudes re-
present the deviations of v and 6 from their limiting steady values

v=2", 0=00} ot (1030)
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It'follows from (1028) that

v’—Cc-}-'—%l
(1031)
*m = i (o ).

The magnitude 8° represents the error of the follow-up system at steady
operating conditions. It consists of the so-called velocity error [the steady-
state velocity lag]

A f‘—-, (1032)
which is proportional to the angular velocity of the pick-up, and of the
static error

o gRN
G=—%c" (1033)

which is determined by the resistance moment N.

The follow-up system will function satisfactorily only if » and § tend to
zero for any initial conditions. The system is called stable if this condi-
tion is satisfied.

The determinant of the set of differential equations (1029) is

41 kp

_% R“""l-' =a)3 -} a,)* - a) 4-a,=0, (1034)
where

a,=RI; a,_RI-l-'C’; a,=?; a,_’i‘q (1035)

A necessary and sufficient condition for the decrease with time of all
solutions of (1029), and therefore for the stability of the follow-up system,
is (for positive coefficients (1035)) that the stability condition

aa,>aa, (1036)

be satisfied.
Inserting the values of the coefficients given by (1035) into (1036) yields

3 C* kuC
(RI + ‘) - ><RIEZ, (1037)
which can be reduced to
‘Rl)<:1 (1038)
If the left-hand side of (1038) is negative, i.e., if
C*> kpgRlI, (1039)

the system will be stable for any value of x. This condition is, however,
almost unattainable.

In fact, it follows from (1032) that in order to ensure a sufficiently low
velocity error of the follow-up system the coefficient € must not be ex-
cessive, since the product kp is limited by the amplifier output voltage °.

Actually, fulfillment of stability condition (1038) necessitates a time
constant = so small that it can sometimes be attained only by means of
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additional amplifier circuits (this is the case with magnetic amplifiers, as
in the numerical example below). These additional circuits (the so-called
feedbacks) may cause unstable operation of the amplifier itself, and usually
require very careful adjustment.

Numerical example. Assume that]=1gcm sec?=0,00001 kgm sec?;
C=0.25vsec; R=35Q; kp = 16 v (the amplifier output voltage is 115 v for a
misalignment angle ¢, —8,=0.002 and a transmission ratio j =3600),

For these values X ct

Y 64— —
T " fRI =64 —182=45.8
Stability condition (1038) is satisfied if
© < 0.022 sec.

The time constant of a magnetic amplifier is considerably larger (of the
order of 0.1 — 0.2 sec).

A method for reducing the amplifier time-constant will now be considered.
It consists in applying the amplifier output voltage » to the primary of a
transformer T, the voltage obtained from its secondary being applied to the
amplifier input (see Figure 198).

T
b

FIGURE 198

The influence of the amplifier input circuit on the transformer second-
ary can be neglected, so that the magnetic leakage flux need not be taken
into account; the equations of the transient processes in the transformer
primary and the secondary are then respectively:

v=Rll,+n,%g. (1040)
0= Rz‘:'*'"z%? ’
where
© =M (n,i,+ nidy). (1041)
Here

i,, is the current intensity in primary;

n,, the number of turns of primary;

R,, the ohmic resistance of primary circuit;

i,, the current intensity in secondary;

ny, the number of coils of secondary;

R, the ohmic resistance of secondary circuit;

@, the magnetic flux (when an air gap exists in the magnetic circuit of
the transformer);

M, the mutual inductance.
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Multiply the first of equations (1040) by n,, the second by m,, and sub-
tract the second from the first. The result is

vny = nyRyi, — Ryn,i,. (1042)
Inserting (1041) into the second of equations (1040) yields
Rty neM 5 (myly + nyiy) =0. (1043)
Substituting the expression for i, obtained from (1042) we obtain
dl dv
FEth=—hg, (1044)
where . .
=m{lL e = Mmny
ot (M pgt), (1045)

Let R be the resistance of the load on the transformer secondary. The
additional voltage fed to the amplifier input is then

w'=—Ri,, (1046)

if the terminals of the transormer secondary are suitably connected.
When this feedback exists, (1011) is replaced by the following two
equations:
& 4v= p(—Riy),
an, dv (1047)
r Hh=—hg.

Eliminating i, between these two equations reduces them to the following
second-order differential equation

a dv da
O"tm—'—(o—*—‘t——ﬂ)—ﬁ-‘l‘-v:}l(u—’—UW), (1048)
where a denotes the parameter
RMn,n
a=pRh=E"7"Ti"s (1049)
# RiRy

Replace the second of equations (1023) by (1048). The following two dif-
ferential equations are obtained in the same way as (1029):

mw+(c+x—a)%§ +o=—kp (o33 +9),
crdl ¢

dt’+ I3 @@ I3

(1050)

These equations describe small perturbations of the steady motion of the
follow -up system, given by (1030),

In the case of feedback, the first of equations (1050) is called the ampli-
fier equation and the second the motor equation,

When
o+4rt=a, (1051)
undamped oscillations of frequency
1
g= Woll) (1052)



can appear in the amplifier circuits if the influence of the right-hand side
of the first of equations (1050) is small.

This is in fact, usually the case, since ¢ is relatively large so that the
torsional vibrations of the motor shaft are almost unnoticeable; the clear-
ances prevent the transmission of vibrations to the load.

These oscillations of the follow-up system are electr ical oscilla-
tions. When

a>atr, (1053)

oscillations of a frequency close to g are established in the system.

Another type of oscillation, mechanical oscillations, is char-
acterized by large amplitudes of the torsional vibrations of the motor shaft
and by a considerably lower frequency p. This frequency can be determined
approximately by neglecting all transient processes in the amplifier circuit

and writing
? =2 —pkd. (1054)

Inserting this into the second of equations (1050) gives the frequency if
the term containing the first derivative of # is neglected,

kpC

The condition for the absence of mechanical oscillations can be obtained
by means of the following considerations.

When the frequency p is relatively low, the term in the first of equations
(1050) containing the second time derivative of # can be neglected. In addi-
tion, when ¢ is small, the following relationship is obtained:

(x—a) 3% + o =—hub. (1056)

This equation differs from the first of equations (1029) only in that the time
constant t has been reduced by a. The stability condition (1038) can now be
replaced by the following approximation:

(—a) (% —g)<1- (1057)

If this condition is satisfied, no mechanical oscillations occur.

If the amplifier has a relatively large time constant <, the magnitude of
a should be close to that of ¢ in order to ensure the stability of the follow-
up system, i.e., in order to satisfy (1057),

Since ¢ is usually small, a small variation of a may cause (1053) to be-
come true, leading to electric instability.

The permissible range of variation of a is thus very narrow, a fact which
makes adjustment of the follow-up system difficult.

Both types of oscillations are easily observed during this adjustment.

The values of the frequencies of these oscillations at their discontinuity
boundary can serve to determine the various parameters of the follow -up
system, andalsoas acheck of the validity of the simplifying assumptions
made above.

A stricter treatment of the same problem requires a study of the stability
condition of (1050),
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‘Expanding the determinant of this system:

X‘-{- u:+tp:;po—-ap l’-{- sf<+p—e 17+

pot

{f4om -
+EEa =0, (1058)

where

p=161 (1059)

(the so-called mechanical time constant) and

=

m=-&. (1060)

The Routh-Hurwitz criterion for (1058) is:

f@)=a*+ 23 (1 -+ om — 2pm) - ps, (1 -4 am) +

pim — p — pem

(1 4 mo)t sy — 35,3, (1 + mo) +s§u

+ Pt —p — pom o, (1061)
where
s=p+o+trn;
s’=c‘t+1p+pﬂ; (1062)
5y ==pot.

If (1061) is satisfied, the follow-up system is stable,

If the quadratic equation for a
f(a)=0 (1063)

has two real roots @, and a,, undamped oscillations of the follow-up system,
corresponding to each root, are possible at the stability limit. Mechanical
harmonic oscillations of the system, of frequency p, correspond to the
smaller root, while electrical oscillations of frequency q correspond to the
larger root.

If equation (1063) has no real roots, the follow-up system cannot be stable
for any value of a. In order to obtain stability in this case it is necessary
either to vary other parameters of the system or to use different feedback

schemes.
The values of p and m in the example given above (p. 256) are

p=2E1 —0.0549, m=1t—6k

Let the amplifier time constant be t = 0,05 and the feedback circuit time
constant ¢ = 0,001,
For these values equation (1063) has the roots

a,==0.0295 and a,=0.0509.
The follow -up system will therefore be stable
0.0295 < a < 0.0509.
It follows from (1057) and (1051) that

o ! <alo-}n,
T ek
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or

0.0282 < e < 0.0510.
The following pairs of imaginary roots are obtained from (1058) for a
equal to @, and a4 respectively:
Ma=1i204 M= +11317.6.

The first pair of roots corresponds to the frequency of mechanical oscil-
lations

p=29.4sec!,
the second, to the frequency of electrical oscillations
g=1376sec-!.

The approximations (1055) and (1052) gives the following values:

_]/kpc_]/m_ - 1 -
= (_Ri— T_Msec 1, q—m =141 sec l.

This numerical example thus confirms the correctness of the approxima-
tions made above,.

The methods used in this section to simplify the equations describing the
behavior of follow-up systems can also be applied, exactly as the methods
used in Chapter V, § 2, in the study of other oscillatory processes.
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Appendix 1

THEORY OF COMPLEX GYROSCOPIC
STABILIZATION SYSTEMS *

The equations of motion of complex gyroscopic systems are usually es-
tablished by the Lagrange method of the second kind**, While this method
has its undoubted advantages, itis very cumbersome and frequently obscures
the physical meaning of the equations obtained.

On the other hand, with a certain amount of practice it is comparatively
easy to form the equations of motion of complex gyroscopic devices by ap-
plying the angular momentum theorem successively to the mechanical sys-
tem of the device as a whole and to its separate components. The present
paper is devoted to a description of this method, using as an example the
study of a system of power gyro stabilization.

1. After attenuation of a transient process, the motion of gyroscopic
systems used for stabilization usually becomes a slow change in the orienta-
tion of the gyros' axes relative to the Newtonian frame. This is usually
called precessional motion.

The angular momentums of the gyroscopic-system suspension elements
and of the housings of its gyros, the equatorial components of the angular
momentums of the rotors themselves, and the angular momentums of the
motor armatures can be neglected in the study of a precessional motion.
The polar angular momentum components (directed along the axis of rota-
tion of the gyro), can be taken as the product of the axial moment of inertia
of the gyro rotor and its angular velocity relative to its housing.

The above-mentioned assumptions lead to the so-called elementary
theory of gyroscope precession. The equations describing the motion of
the gyroscopic system are considerably simplified when these assumptions
are made: in particular, their order is reduced. At the same time, the
accuracy of the results obtained by the elementary theory is completely
adequate, except in special cases when the influence of the gimbal-ring
inertia must be taken into account.

Transient processes in gyroscopic systems can be investigated only if
the angular momentums of all parts are taken into account; the equations
of the elementary theory are insufficient for this.

2. When the angular momentum theorem is used to obtain the differ-
ential equations of motion of a gyroscopic device, the composition of the
mechanical system to which it is to be applied must first be stipulated
clearly.

* PMM, Vol. 22, No. 3. 1958.

** Krylov, A. N, and Yu, A, Krutkov. Obshchaya teoriya giroskopov i nekotorykh tekhnicheskikh ikh
primenenii (General Theory of Gyroscopes and Some Technical Applications), — Leningrad, Izdatel'stvo
AN SSSR, 1932,
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The angular momentum and its derivative must be determined relative
to a reference frame E*7*(* having a translational motion; this frame must
also be clearly defined. We shall call it the basic reference frame. The
forces of inertia due to translational motion acting on the mechanical system
considered, have to be calculated relative to this basic frame. These forces
can be replaced by their resultant. Its line of action passes through the cen-
ter of gravity of the mechanical system, and its direction is opposed to that
of the acceleration of the basic reference frame relative to the so-called ab-
solute reference frame E$7C;. The origin of the latter is located at the cen-
ter of mass of the Universe, and its axes are oriented according to the
Newtonian frame,

The resultant of the inertia forces is obviously equal in magnitude to the
product of the mass of the mechanical system and the acceleration of the
basic reference frame.

In the general case, the basic reference frame may be any frame E7C, not
necessarily having a translational motion. However, if this basic frame &7k
rotates relative to the absolute frame E"-q:C: the problem of allowing for the
inertia due to translational motion is greatly complicated. Coriolis forces
then appear which must be considered as external forces acting on the sys-
tem. Coriolis forces occur when the basic reference frame has a transla-
tional motion. .

3. Let a given reference frame *7*(* be selected as basic reference
frame, and let G be the angular momentum of the mechanical system con-
gsidered relative to this frame which has a translationalmotion. It follows
from the angular momentum theorem that

dG,, G dGe

‘: = Ms, —‘?1:-=”,o. —“—=M:o. (1)

The left-hand sides of these expressions represent respectively, the
time derivatives of the projections of the angular momentum vector G on
the §*-, 4*-, and {*-axes while the right-hand sides represent the sums of
all external moments acting on the mechanical system considered about
these same axes. The moments due to forces of inertia arising out of the
translational motion are included in these sums.

Equations (1) are inconvenient because of the unwieldy expressions ob-
tained. The calculations can be considerably simplified by projecting the
angular momentum derivative on the axes of a moving reference frame,
whose motion is in a certain way related to that of the mechanical system
considered.

Let zyz be such a reference frame; it will be called the auxiliary frame.
Let @ be the angular velocity of this frame relative to the basic frame {*7*(®,
and let the origins of both coincide. The projections of the time rate of
change of the angular momentum vector on the z-, y-, and z-axes are

dG 4G
'—‘T" + "yGt — 0,y 7‘1‘*' ®,G, —©,G,, ‘d'z"' + "’:Gy - “’yG:v (2)

where G,, G,, G,arethe projections of the angular momentum vector on
these axes, and w,, '»,, ®, the components of the angular velocity of the
reference frame zyz relative to the basic frame §*7*(* or, which is the
same, relative to the absolute reference frame §¥q3C2,

In accordance with the angular momentum theorem, the components (2)

are equal to the sums of the moments due to all external forces acting on
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the mechanical system considered and to the translational motion of the
basic reference frame £*%*(*. (The frame zyz was only introduced because
it is simpler to calculate the angular momentum derivative relative to it
than relative to the basic frame §*4*(*.) The following equations are obtained
by denoting these sums of moments by M,, M,, M_:

dG,
ddG“ +myG’—o,G'= M, —"‘—’-f-m‘G.—m.G,:Hy, @)
3

dG,
ff‘—+w,G,—u,G,=H,.

These relationsiips are equivalent to (1).

4. The external forces acting on mechanical systems include the unknown
constraining forces between them and the base (usually moving) on which they
are mounted. Gyroscopic systems are usually mounted on the base by means
of gimbals. When the mechanical system consists of several elements of the
gyroscopic device, for instance of the entire system less the outer ring, or
of a single gyro with its housing and rotor, the constraining element is usu-
ally a simple hinge. In many cases it can be assumed approximately that
friction in the hinge is independent of the constraining force of the bearing
on the pivot, If the pivot axis coincides with one of the axes of the refer-
ence frame zys, the equation of system (3) will contain no unknown constrain-
ing forces.

In the more general case when the pivot axis does not coincide with the
z-, y-, or z-axes, the equation of motion of the gyroscopic system, which
contains no constraining forces, is

[%G—‘i + o,G, — w,G,] cos zv -+ [f‘GT' + oG, — w,G,] cosyv 4

-+ ‘z' -+ m,G,—w,G,] cosv=2»M,. (4)

coszv, cosyv, coszv are the direction cosines of the pivot axis v relative
to the frame zyz, and M, is the sum of the moments about the pivot axis due
to the external forces acting on the mechanical system. M, includes also the
moment due to friction in the hinge, the torque transmitted to the pivot by means
of, e.g., an electric motor, and the moments about the v-axis, due to inertia
forces caused by the translational motionof the basic reference frame §*7*(*

M,=M,coszv + M cosyv+{ M, cos sv. (5)

If the friction in the hinge depends on the constraining forces, an equa-
tion of motion not containing these unknowns is far more difficult to obtain.
All three relationships (3) have to be used in this case. It would then also
be very difficult to establish the equations of motion of a gyroscopic system
by the method of Lagrange multipliers.

5. Consider as an illustration the determination of the equations of mo-
tion of a three-dimensional triaxial gyroscopic power stabilizer* (Figure 1).

The pivot §- (2-) axis of the gimbal frame K of platform P is mounted in
bearings on the moving base carrying the stabilizer. The platform P can
tilt about the axis ¥’ (y) lying in the plane of frame K and forming a right
angle with the axis E(2/). Two gyros, I and II, are mounted on the platform;
their housings can tilt about the z- and z,-axes which are perpendicular to
the plane of the platform.

* Such a system was developed in 1957 for the Academy of Sciences of the Ukrainian SSR for the stabilization
of electric measuring frames on a moving base (helicopter).
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The body B which has to be stabilized can also tilt together with gyro III
about the z- (Z-) axis which is also perpendicular to the plane of platform P.
The y,- (§-) axis (the housing pivot axis of gyro 1II) is parallel to the plane
of platform P.

FIGURE 1

Introduce the right-handed coordinate systems $uf, £y'7, zyz, and z§2,
fixed respectively to the moving base, the frame K, the platform P, and
the body to be stabilized B. The reference frame zyz will be considered
as basic frame in all subsequent calculations. The §-axis of the coordinate
system Ev coincides with the longitudinal axis of the moving object (the
moving base), and the m-axis with its transversal axis. The - and y'-axes
of the coordinate system 2y'Z lie in the plane of frame K; the z’-axis coin-
cides with the E-axis and is the axis about which the frame K tilts (Figure 2).
Let @ be the tilting angle of the frame relative to the object. The coordinate
systems Z'y'7 and £ coincide when a = 0. When a >0 the frame tilts
counterclockwise if viewed from the positive §- (or the z’-) axis.

The coordinate system zyz is fixed to the platform P (Figure 3). Its y-
axis coincides with the y-axis and forms the tilting axis of platform P,

Let B be the tilting angle. The z-axis of the coordinate system ayz lies in
the plane of the platform, the z-axis being perpendicular to it. The planes
of platform P and frame K, and therefore the corresponding axes of the sys-
tems zyz and 7'y'Z, coincide when B=0. When B> 0, the platform P tilts
counterclockwise when viewed from the positive y- (or ¥'-) axis.

Lastly, the coordinate system z§Z is fixed to the body B which has to be
stabilized. The Z-axis coincides with the z-axis of the coordinate system
zyz fixed to platform P. Let ¢ be the angle of rotation of the system ZjZ re-
lative to the system zyz (Figure 4). The z- and z-, y- and g-axes coincide
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respectively when ¢$==0. When ¢ >0, body B is rotated counterclockwise
relative to its initial position when viewed from the positive 2- (2-) axis.

FIGURE 2 FIGURE 3

Let 1, and 1, be the tilting angles of the housings of gyros I and II relative
to platform P (Figure 5). When 1,=0, the axis of rotation of gyro I is paral-
lel to the y-axis; the axis of rotation of gyro II is similarly parallel to the

FIGURE 4 FIGURE &

z-axis when 1,=0. The signs of 1, and {3 are determined in a similar way
to the sign of ¢.

Lastly let § be the angle between the axis of rotation of gyro III and the
plane of the platform (Figure 6). Choose the positive direction of 3 in such
a way that the projection of the angular momentum vector of gyro III on the
z- (2-) axis is positive when 0 3 < Ypm.

6. To ensure continuous stabilization of body B, the device described
must include, in addition to the gyros, also elements applying to frame K,
platform P, and body B torques of magnitudes and directions determined by
T1» T and 3. These elements may be the electric motors EM,, EM,, and
EM; (Figures 2, 3, and 6). The frame of motor EM, is secured to the mov
ing base; it develops a torque M,., applied to the gimbal frame K about the
t- (£-) axis. The motor is controlled by means of an amplifier, whose in-
put voltage is supplied by the pick-up D, mounted on the housing pivot of
gyro I. The torque applied to gyro I by the motor EM, causes a precession
of the gyro which tends to reduce the angle 7,. If the torque is sufficiently
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large, 1, will never attain the value Y= at which the stabilization is disturbed.
This could happen due to a rotation about the z-axis of the device together
with the moving base, or by some other cause (gravity, friction, inertial
loads, etc).

The motor EM,, which applies to platform P, a torque M, about the
¥'- (y-) axis, is mounted on frame K. It is controlled through the pick-up
D,, which records the angle 1,.

Lastly, the motor EM;, mounted on the platform P, tends to rotate the
body B about the z- (2-) axis by developing a torque whose magnitude and
direction are determined by 8 (Figure 6).

FIGURE 6

The body B can vary its orientation only as a result of the action of mo-
ments applied about the pivot axes of the housings of gyros I, II, and III.
These may be due to friction which causes the specified orientation of body
B to be altered. In order to restore this orientation, torques are caused
to act about the pivot axes of the housings of the gyros by means of solenoids,
and in many cases by utilizing the force of gravity*.

7. Six mechanical systems will be examined successively in order to
establish the equations describing the behavior of this complex gyroscopic
device: 1) the device as a whole, comprising the frame K, the platform P,
the body B, and all three gyros with all the additional elements linked to them
kinematically; 2) the device without the frame K; 3) the body B with gyro III;
4) the gyro I; 5) the gyro II; 6) the gyro IIL.

Each of these systems is linked to the others or to the moving base by a
plane hinge. The torque about the hinge pivots due to external forces acting
on the relevant system is assumed to be known.

® Torques created by small additional weights are capable of bringing the platform into the horizontal
position, and of creating a precession of gyro Il so that body B will not rotate relative to the Earth, For
this latter purpose, a suitable weight, creating a torque about the yy-axis, has to be mounted on the
housing of gyro I1I. In order to bring the platform P into the horizontal position, it is sufficient to fix
additional weights to one side of the housings of gyros I and 1l. When the platform is inclined, these
weights create torques about the pivot axes of the housings, causing the precession of gyros I and 1L
When the weights are fixed to the correct sides of the housings, the platform retums to the horizontal
position. Such a correction system is called mechanical. It is simpler than the so-~called electric
correction, in which the required torques are caused by solenoids. The magnitudes and directions of
the torques are in this case determined by the deviations of pendulums mounted on platform P,
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_ The angle of rotation of the pivot relative to the bearing is one of the
generalized coordinates of the device; this is in fact the reason for select-
ing the above-mentioned mechanical systems.

A reference frame having its origin at the geometric center of the gim-
bals, i.e., at the common origin of the coordinate systems &, z'y'z, zyz,
and 2§38 (fixed respectively to the moving base, the frame K, the platform P,
and the body B), is taken as the basic frame {*9*(* for the first three me-
chanical systems. The origins of the basic reference frames for the last
three mechanical systems (the individual gyros) coincide in each case with
the intersection of the housing-pivot and rotor axes of the corresponding
gyro.

The same reference frame zyz, fixed to the platform P, is used in all
cases as auxiliary frame. The angular velocity of this frame (or, which
is the same, of the platform P) relative to the basic reference frame §*%*(*
will be denoted by », and its projections on the -, y-, and z-axes by o,, o,
o,. The projections o, and o, are determined by the precession of gyros 1
and II, and must therefore be small; since w, is determined by the motion of
the base carrying the stabilizer, its magnitude can be arbitrary.

8. Let M’ be the resultant moment of the external forces acting on the
first mechanical system.

The angular momentum G’ of the [irst mechanical system is (within the
limits of the elementary theory) equal to the sum of the angular momentums
of gyros I, 1I, and III. Its projections on the axes of the auxiliary reference
frame zyz will respectively be

G, = H (—sin 1, - cos 7, -}- cos 3cosy),
G, = H (cos 1,+ siny, 4 cos 3 sin ¢), (6)
G;-:_ H sin 3,
as is easily seen from Figures 5 and 7. The angular momentum of each
gyro is assumed to be H = const.
The following relationships, similar to (3), are obtained by applying the

angular momentum theorem to the first mechanical system:

dG‘ v 4 *
e +wycz—"’:Gy =M,

46, : e
_dgl + m:Gz ’—‘@‘G‘ = My1 (7)
dG' r 1 ’
G oG, 06 =M,
It is seen from Figure 3 that (exactly as for (5)) the expression

M cosp4 M sinp= M, (8)

represents the sum of the moments about the - (§-) axis due to the forces
acting on the first mechanical system, i.e., the complete stabilizer. This
sum does not contain the moments due to the bearings constraints.

* Within the limits of the elementary theory of gyroscope precession the resultant vector of all these
forces is equal to zero; they are therefore equivalent to a couple of moment M’
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We obtain
dc, , , 4G, , o ,
[—de.+ u’yGr - w’G’]cos p+[ T‘*“” sz_m ycs]Sln p = M:") €Y

by subsituting in (8) for M, and M, their expressions from (7). This re-
presents therefore the equation of motion of the gyrostabilizer. It does
not contain the moments due to the unknown constraints in the pivot bear-
ings of frame K*.

Inserting (6) into (9) yields

A { cos B 7“— (—siny,+cos 1,)— cos B cos 3sin ¢(m,+ %)——
— (cos B sinbcos«{a——sinBcosB)% + o, [cosBsin3 —
— sin B (—sin 1, + cos 7, cos 8 cos $)] 4
+ (o, sin B — w, cos B) (cos 1, +- sin 1) +
+m‘sinpcos8sin¢}=M;,, (10)

The torque M", includes, in addition to the moments due to friction and
to the torque developed by the electric motor EM,;, also the moments due
to gravity acting on the moving parts and to the inertia forces caused by
the translational motion of the basic frame §*4*(* (whose origin is at the
geometric center of the gimbals).

FIGURE 7

9. Equation (10) is one of the six differential equations which describe
the motion of the gyroscopic stabilizer. In order to obtain the second of
these equations, consider a mechanical system which includes all com-
ponents of the stabilizer except the frame K. Since the angular momentum
of frame K is neglected in the elementary theory of gyroscopes, the total
angular momentum G of this system is equal to the total angular momentum
G' of the system which includes the frame:

G,=G, G,=G, G=G, (11)
where G,, G,, and G, are the projections of the angular momentum of the

new mechanical system on the axes z, y, and 2, and G, G'y and G, are
given by (6).

In this system the constraints acting between platform P and frame K are
external and must be taken into account in the equations derived from the

It is assumed that friction in all gimbal bearings is independent of the constraining forces,
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angular momentum theorem. These equations are similar to (3). The only
equation (3) which contains no constraining forces is the second, since the
y- (y'-) axis is the pivot axis of platform P whose bearings are rigidly fixed
to frame K.

The following equation is obtained from (6), (7), and (11):

d . ;oo db d.
H[—d—'-(cos'{,-i-sm'r,)‘-smssm g + (w, + 7}"—) cos 3 cos -+
+ o, (—sin 1, 4 cos 1,) — w, sin 8]=My. (12)

The torque M, includes the moment due to friction of the platform pivot
in its bearings, the torque of motor EM,, and the moments due to gravity
and the inertia forces caused by the translational motion of all elements of
the stabilizer except the frame K.

10. Consider now the third mechanical system — the body B with gyro
III (Figure 4). Its angular momentum is the angular momentum G of gyro
III. It follows (Figure 7) that the projections of the vector G on the axes of
the auxiliary reference frame zyz are equal to

G.—=Hcosdcosy, G,=Hcosdsing, G,=Hsind. (13)

In this case the third equation (3) has to be used , since the other two
contain the unknown constraints in the bearings of the body B. These are
external forces withrespectto this particular mechanical system. The follow-
ing equation is therefore obtained with the aid of (13):

H(cosB%+w,cosBsinqa—m,cosacosqﬁ)=ﬂ,. (14)

Here M, is the moment about the z- (2-) axis due to all external forces
acting on the third mechanical system consisting of the body B, and the
housing and rotor of gyro 1II. This includes friction, the torque applied
by motor EMj;, and also the moments due to inertia and gravity. The inertia
forces are those due to the translational motion of the basic reference frame
E*q*(* whose origin is at the geometric center of the stabilizer suspension.
11. When the last three mechanical systems — the gyros I, II, and IIl —
are being considered, the corresponding basic reference frames &fn,'[,‘,
£, *n,*(,* and §4*n,*(s* have to be chosen so that their origins will lie at the
intersections of the housing-pivot axis with the rotor spindles of the cor-
responding gyros. They will have different accelerations relative to the
absolute reference frame £,*7,*(,* This difference is due to the angular
velocity w of the platform P and, in the case of the basic frame §*7,*(®,

also to the relative angular velocity :—? of body B relative to platform P.
Due to the small dimensions of the gyroscopic stabilizer and to the low

values of wo,, o v, and % this difference between the accelerations of

y'
the frames §*7,**, E,*1,*(,* £*n,*(;* and the acceleration of the basic
frame £*9*{*® is small and usually can be neglected.

The following equation, similar to the third relationship (3), is obtained
by applying the angular momentum theorem to the mechanical system con-

sisting of the rotor and housing of gyro I:

d
47 Gt + 0.6y — 0,Ge = M3, (15)
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This equation does not contain the unknown constraining forces at the hous-
ing bearings. Here (Figure 5),

Gl=—Hsiny, Gj=Hecost, Gi=0 (16)

are the projections of the angular momentum G' of this system (equal to
the angular momentum of gyro I) on the axes of the auxiliary reference
frame zyz.

The magnitude Mﬁ‘ represents the sum of the moments about the z;-axis
due to the forces acting on the housing and rotor of this gyro. These forces
are due to friction in the bearings of the housing suspension, gravity, the
translational motion, the elasticity of the electric wires, and the reactions
of the pick-ups.

Inserting (16) into (15) yields

H(m,cos'f,-l—wysinn)z.-Mf,- (1n

This is the fourth equation of motion of the gyroscopic stabilizer.
Similar calculations for gyro II yield the fifth equation:

H(m,sinn—w,cosh):Mg- (18)

The moment M:,’ is analogous to the moment M;I; it represents the sum
of the moments about the z,-axis due to the forces acting on the housing and
rctor of gyro Il

Equations (17) and (18) do not contain the unknown constraining forces
at the bearings of the gyro housings.

12. Consider finally the sixth mechanical system, consisting of the
housing and rotor of gyro III (Figure 6). Inserting into (3) the projections

G" — Hcosdcosy, G =Hcosdsing, Gi'=Hsind (19)
of the angular momentum of gyro III yields
H [% (cos 8 cos §) + w, sin 8 — w, cos Isin ’P]= M
H[‘% (cos 8sin¢) -} w, cos B cos § — w, sinb]_—_y‘", 20

H[—d‘-i‘—sin 3+ (0, sin y — v, cos §) cos 8]:

r
4

M;", M:,", M:" are the sums of the moments about axes respectively
parallel to the - y-, and z-axes, but passing through the geometric center
of the gimbals of gyro III, due to forces acting on the housing and rotor of
gyro III.

These forces include also the constraining forces at the bearings of the
gyro housing, located in body B. To eliminate these unknown forces, form
the expression

—MMsing + ML cos p = M3, (21)

being the sum of the moments about the y;-axis due to the forces acting on
gyro III. It contains no constraining forces. Substitution of the values of

I and MJ' from (20) yields

I

H[(w,+ % cos 3 — (v cos ¢ + o sin t{»)sinb]:Mv, . (22)
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. Note that different auxiliary reference frames may be used to derive
(17), (18), and (22); thus, (22) can be obtained by using the frame 22 fixed.
to body B (Figure 4).

Equation (22) completes the set of 8ix equations describing the behavior
of the gyrostabilizer and its components both relative to each other and
relative to the Newtonian frame,

13. Let (10), (12), (14), (17), (18), and (22) form a set. The following
equations describing the motion of a triaxial power gyrostabilizer are
obtained:

H{cosB[;“—(——sinn-{—cos'r,)—cosBsinqa(o,-{-%)-{-o,sin&]_
——(cosBsin&cosqa—-sinBcost)%:—-}-sinﬁ[o,oosbsin ¢—
— wy (—sin 1, -} cos 7, -+ cos 3 cos ¢)] -
+ (0, 8in — e, cos B) (cos 1, + sin 1) } = M'us

H[;;(oosn—l-sin'f,)—sinssinq;% + (m,+‘—‘t)c058cos¢+
+ w,(—sin 1, -} cos 1,)—m,sin8]= M,

H(oos 8%+w,cos&sin?—o,cosloos§)=ﬂ,;
H (o, cos.1; + wy sin 'ﬁ)=”{,;

(23)

H (w, 8in 13— o, cos 1)) = M,;
H [(c,—}-%l) cos 8 — (o, cos § -}- @, sin §) sin 8]= M.

14. Several important conclusions can be drawn from these equations.

Let
Mi=M=M=0. (24)

This means that no torques are applied to the pivot axes of the gyro hous-
ing. This can in practice be approximated by reducing friction in bearings
and strain in the electric wires to a minimum and by mounting the stabilizer
s0 that by careful balancing the center of gravity of each mechanical system
housing rotor is made to lie on the housing pivot axis.

The fourth and fifth equations (23) then yield:

©, c0s 7y -} o, siny; =0, »,siny,—w, cos7;=0. (25)
It follows that
w,==e, =0 (26)
unless 4
n=nt 7% (27)

which means that the axes of rotation of gyros I and II are parallel. Thus

if 1, and 7, are maintained smaller than 45° by the action of the electric
motors EM; and EM,, the platform P will be partially stabilized when the
first two of conditions (24) are gatisfied. The perpendicular to the plat-
form (the z-axis) does notalter its orientation relative to the Newtonian frame,
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Inserting (24) and (26) into the sixth of equations (23) yields

m,—}--%f—:O,' (28)
provided, of course, that .

The left-hand side of (28) represents the projection on the z- (2-) axis of
the angular velocity of body B relative to the basic reference frame {*n*C%
The projections of this angular velocity on the z- and y-axes coincide with
the corresponding projections of the angular velocity of platform P and are
equal to zero because of (26). Therefore, when no torques are applied to
the pivot axes of the housings of the three gyros, i.e., when condition (24)
is satisfied, the body B is stabilized relative to the Newtonian reference
frame.

Inserting (26) and (28) into the first three of equations (23) yields,

-—Hcosﬂ[%(sinn—cos 19 + (sin 8 cos g — cos Btgp) v +
+ o, (cos 1, +-sin n)] =Mz,
d . . . .
H [ a; (cos y,-+sinyy)—sindsing :—:—}—m, (—sin 1,-+-cos 1,_)]=M o

a3
Hcos%77=f7 .

(30)

15. Assume that no torques are applied to frame K, platform P, and
body B, and that there is no friction in their bearings:

M','=M,=ﬂ,=0. (31)

If condition (24) is also satisfied, and if the angular velocity of the base is

such that
0,=0, (32)

then equations (30) will be satisfied when 7y, ;. and 8 are constant.

Let the electric motors EM,. EM,, and EM; be controlled in such a
manner that the torques applied by them to the pivot axes of frame K, platform
P, and body B are proportional to the tilting angles of the housings of the-
corresponding gyros, and assume that there is no friction in the gimbal
bearings. In this case

My=ky, M,=—ky, M,=—hk, (33)

where k is a proportionality factor.
Equations (30), together with condition (32), have in this case a solution:

n=0, 1,=0 3=0. (34)

It is easily seen that the equilibrium ‘position of the gyrostabilizer, de-
fined by (34), is stable (within the limits of the elementary theory). In fact,
if 1;, 79, and 3 are small, their trigonometric functions in (30) can be replaced
by the zero- and first-order terms of their series expansions. Taking into
account (32) and (33), equations (30) become

—Hoosp S0 — ey, — HsinB 5p,  H Jt=—kp,,

@ dt (35)
Hj‘—“:——ka.
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It follows thaty,, 74, and 3 will tend to zero irrespective of the law of vari-
ation of B determined by the motion of the base; of course B<C90°*,

In the general case the right-hand sides of (30), i.e., the torques
M.,, M and ﬂ,, include in addition to the torques of the electric motors,
also the moments due to friction in the suspension bearings of the frame K,
platform P, and body B, determined by the relative angular velocities da/dt,
dp/dt, and dy/dt. In addition, when the mechamcal system and its separate
parts are insufficiently balanced, M, , and ﬂ include also the moments
due to gravity and the inertia forces caused by the translational motion.

Assume that w,»0. Then, assuming that 14, 7, and 3 are small, equations
(30) can be written

—Hoos B[ —tg B +o,(1+1) |=MZ+ M (1),
B[R tod—n)]=M+M@), (6
HE =4+ A0,

where M',", M;, and H: are the sums of the moments due to friction, inertia,
gravity, etc, acting respectively on the following mechanical systems:

1) frame K— platform P — body B and gyros I, II, III; 2) platform P— body B
and gyros 1, 1I, III; 3) body B and gyro III.

M(y), M(1,), and M (3) are the torques applied to these mechanical systems
by the motors EM,, EM,;, and EM; respectively.

The torque produced by each electric motor cannot exceed a certain limit
imposed by motor and motor transmission. Figure 8 shows a fairly common
type of functional relationship between the motor torque M for the case of a
short-circuited squirrel-cage motor (rotor at rest) and the angle 7 for the
corresponding gyro. The so-called stepped relationship, is shown in

Figure 9.
M ez M
i f i
f 4 [ 4

FIGURE 8 FIGURE 9

Satisfactory performance of the stabilizer requires that for any motion
of the object, the max1mum t'rque M. exceed the corresponding de-
stabilizing moment M,'. ., or ﬂ . Similarly, the maximum torque of
motors EM; and EM, should exceed by a margin the product

(©)max H, (37)

* It is possible that when the motors are switched in the transient processes mentioned in § 1 are not damped,
leading to oscillations of the gyroscopic platform (primarily about the £-axis). To study these oscillations
and the means for damping them, it is necessary to take into account the moments of inertia of the gyro-
scopic-device elements and transient processes in the electric circuits of the motors and the feedback
circuits of the amplifiers, The influence of the motion of the base itself on the oscillations is usually
negligible because of their high frequency. The analysis of these oscillations of the gyrostabilizer forms
the subject of a separate study,
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where (©,)n., is the maximum value of the angular velocity of the platform
about the z-axis, caused by the object's rotation. In the contrary case,
the housings of gyros I and II will lag behind the platform during its rota-
tion, and 1, and 1, may increase infinitely.

The conditions under which the body B is stabilized relative to a New-
tonian frame are given above. They require that the sum of the moments
about the pivot axes of the corresponding housings due to the forces acting
on each of the three mechanical-system housing rotors be separately equal
to zero. This can be achieved only if friction in the bearings of the housing
pivots is completely eliminated, if the center of gravity of the system hous-
ing rotor is accurately located on the housing pivot axis, etc.

In many cases it is required that the body B be stabilized relative to a
reference frame linked to the local vertical and the compass points; such
a frame is usually called a geographic reference frame, and its axes are
directed to the east, the north, and the zenith respectively. When the base
is stationary, the angular velocity of body B must be equal to the angular
velocity of the Earth. If the base moves, the angular velocity of body B must
be equal to the sum of the angular velocity of the Earth and the angular
velocity relative to the Earth of the geographic reference frame.

In this case, torques M:‘, M',{ and M,,':', causing precession of the gyros,
and, as a result, the required angular velocity of body B, have in accordance
with the last three of equations (23) to be applied to the pivot axes of the
housings of gyros I, II, and IIl. Itisverydifficulttorealize this technically.
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Appendix 2
THEORY OF THE GYROHORIZONCOMPASS*

1. This appendix gives a rigorous treatment of the precessional theory
of a gyrohorizoncompass having as sensitive element a device similar to
the so-called gyrosphere of the "New Anschiitz" gyrocompasses**.

This sensitive element can be considered as a set of two gyros whose
housings have parallel pivot axes with bearings rigidly mounted on the
same frame; this frame will be called the gyro frame (Figure 1). In the

¥
/]

FIGURE 1

double-gyrocompass this frame is enclosedin a spherical shell and immersed
in a liquid. An almost frictionless suspension is thus obtained (Figure 2).

y

A

FIGURE 2

* PMM, Vol. 20, No, 4 1956.
** Bulgakov, B, V. Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes). — Moskva, Gostekhizdat,

1955, [English translation, IPST. 1960,]; Grammel, R. Der Kreisel, F. Vieweg, Braunschweig. 1920,
[Translated into Russian, 1952,]
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It will be assumed that the center of the frame suspension moves along
a sphere S of radius R which encloses the Earth, and that the force of
gravity acting on the frame is a single force F applied at the center of
gravity of the frame and gyros, ina direction normal to the sphere.

It will also be assumed that the sphere § does not participate in the
Earth's rotation and does not alter its orientation relative to a Newtonian
reference frame. The translational motion of the sphere due to the Earth's
rotation about the Sun can be neglected since the gravitational gradient is
very small. The center of sphere S can therefore be considered as sta-
tionary.

It is convenient to study the gyro-frame motion relative to the sphere 8*,

Friction in the suspension of the frame and in the bearings of the gyro-
housing pivot axes, and the unavoidable assembly inaccuracies (e.g., axial
and radial clearance in the bearings, residual unbalance about the suspen-
sion axes), will be neglected.

It will be assumed that the housings of the two gyros are tilted through
equal and opposite angles relative to the frame (or, which is the same,
relative to the sensitive element of the double-gyrocompass) by gears or
link mechanisms (Figures 1 and 2).

2. In accordance with the elementary theory of gyroscope precession,
it will be assumed that the total angular momentum H of the gyro frame as
a whole is equal to the geometric sum of the angular momentums B’ and B*
(of equal magnitude) of the two gyros. Let 2e be the angle between the axes
of the gyro rotors (Figure 1). Thus

H =2Bcoss (B=B=B5B"). (1)

The vector of the total angular momentum H, is directed along the bi-
sector of the angle 2¢; because of the above-mentioned gear [or linkage],
the vector H has a constant position relative to the frame.

Let a coordinate system zyz be fixed to the gyro frame with origin at
the center of suspension, y-axis parallel to the vector H, and z-axis paral-
lel to the pivot axes of the gyro housings. This defines uniquely the position
of the z-axis (Figure 3).

FIGURE 3

Let o,, v, and o, be the projections on the axes of this system of the

frame's angular velocity relative to the sphere 8 (or, which is the same,
* Ishlinskii, A.Yu. Ob otnositel’'nom ravnovesii fizicheskogo mayatnika s podvizhnoi tochkoi opory
(The Relative Equilibrium of a Physical Pendulum with a Moving Point of Support). — PMM, Vol.20,
No. 3. 1956.
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.
relative to a Newtonian reference frame). The expressions

dH
d_t.+ W,H, —'mzny'

dH
'E‘! +‘°:Hl _“’.Hn (2)

4 4o H,—o,H,
represent the projections of the time rate of change of the angular momentum
H on the z-, y-, and 2-axes.

According to the angular momentum theorem, these projections are re-
spectively equal to the sums of the moments acting on the frame about these
axes. These moments will be denoted by M, M,, and M,.

The frame's angular momentum vector is directed along the y-axis.
Therefore,

H,=0, H,=H=2Bcoss, H,=0.
The following three equations result from this:

—oH=M, Z—M, oH=M, (3)

The gyro frame thus represents a mechanical system having four de-
grees of freedom, and therefore a fourth equation, containing the projec-
tion of the angular velocity o,, has to be added to (3) in order to define the

motion completely. The z-components of the time rate of change of the
gyros' angular momentums are

(I)‘B’y—-wyB,.=M'" ch;—myB:=M:' (4)
Here M, and M, are the sums of the moments acting on the housings of
each gyro about the pivot axes of these housings, and B, B’,, B, B; are the

projections on the z- and y-axes of the angular momentums B’ and b" of the
gyros. Obviously (Figure 3):

=—B,=Bsins, B;=B;=Bcos¢- (5)

z
In accordance with the elementary theory of gyroscope precession only
the angular momentums of the gyro rotors enter into the equations of mo-
tion. The remaining angular momentums and their time variations are
neglected. It is therefore assumed that the forces acting directly on the
frame are in equilibrium. In particular

M,—M,—M,=0. (6)

Here — M, and —M,, are the moments of the couples counteracting the
moments M. and M, applied by the frame.

When (4) is inserted into (6) and (1) and (5) are taken into account, the
third of equations (3) is obtained.

Let N be the difference between the moments M, and M. It then follows
from (4) and (5) that

N=M,— M,=—o,2Bsine. (7)

A moment N can be created by means of a spring device.
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By virtue of (3), (7), and (1), the motion of the gyro frame is determined
by the following four equations:

—w,2Bcose=M; o 2Bcose=M;

%(ZB cose)y=M, —w,2Bsine=N. ®

3. The parameters characterizing the gyro frame, and in particular
the relationship between /V and e, can be chosen so that for certain initial
conditions the z-axis will remain always normal to the sphere S, irrespec-
tive of the motion of the frame suspension point on it.

To prove this, it suffices to find the conditions under which equations (8)
become identities.

Introduce a moving reference frame §{*7*(* having its origin at the point
of gyro-frame suspension and whose axes are oriented by a Newtonian re-
ference frame. The equations of motion of the gyro frame relative to this
coordinate system are given by (8).

The forces acting on the gyro frame also include, in addition to gravity
and the suspension constraints, the inertia forces due to the translational
motion together with frame {*7*(*. These inertia forces form a single force
Q acting at the center of gravity of the gyro frame. The projections of this
force on the z-, y-, and z-axes are

0:="Ms' Qy=—mwy' 0:=— (o (9)

Here m is the mass of the frame together with the housings and rotors
of the gyros, and w,, w,, w, are the projections on the z-, y-, z-axes of the
acceleration of the frame suspension point,

Therefore*

dv do
W, =—F + o0, —op, w, =7’1 + 0,0, — w0,

do
w,= d" 0.0, — O Dy,

(10)

where o,, v,. v, are the projections of the velocity of the frame suspension
point, and w,, w,, o, the projections of the angular velocity of the gyro frame
(and therefore of the coordinate system zyz) relative to the sphere §.

The 2z axis must be normal to the sphere S, and therefore*

v,=o R, v,=-—oR, v,=0. (11)

y

Using (9), (10), and (11), the projections of the force Q on the axes of
the system zyz can now be written in the form

Q,=—mR (%—}— m,m.) , Qy=-—mR (— i;:—‘——«}- w,t»y) .

Q,=—mR(—ov}—o}).

(12)

Let the frame's center of gravity be located on the negative z-axis at a
distance !l from the suspension point. In this case the force of gravity is

* Suslov, K, G. Teoreticheskaya mekhanika (Theoretical Mechanics). — Gostekhizdat, 1944, [cf: Goldstein
Classical Mechanics. p. 135, —Addison-Wesley Press. 1951.]
** Ishlinskii, A. Yu. Ob otnositel'nom ravnovesii fizicheskogo mayatnika s podvizhnoi tochkoi opory
(The Relative Equilibrium of a Physical Pendulum with a Moving Point of Support). — PMM, Vol, 20,
No. 3. 1956,
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directed along the s-axis, and its moment about the suspension point is
therefore zero. The same is true of the component @, of the inertia force
due to translational motion and of the reaction of the link. In order to de-
termine the moments M,, M and M,, it suffices therefore to find the mo-
ments about the z-, y-, and z-axes due to the forces @, and Q,. The follow-
ing expressions are then obtained:

M,=10, M,=-—1Q,, M,=0. (13)

Inserting these expressions into (8), and using (12) in the resulting equa-
tions, yields
—w ZBcosc.._mlR(‘—"l-—myw) w,2B cos e =0,
duy . (14)
d_t' (2B cos s) =miR |2~ + 0.0,), —w,2B sine=N.

It remains to determine the conditions under which these equations become
identities.

1t follows from the third of equations (14) (except for the exceptional

1
case c=—2-1t) that: w, =0, (15)

It is now easily seen that the first two of equations (14) are satisfied if
2B cos e= H —=mlRw,,. (16)

Eliminating w, from the fourth of equations (14) by means of (16) yields

483
N—-—-—u-t cosssine. amn
It follows from (15) and the second of equations (11) that
Dy=0. (18)

The z-axis must therefore be initially tangent to the trajectory of the suspen-
sion point in its motion on the sphere § (Figure 4), but it will remain so

FIGURE 4 FIGURE §

throughout the motion only if the other initial conditions, given below, are
likewise satisfied.

Since by (11) and (15) v,=v,=0, v=v,==0 R, where v is the velocity of
the frame suspension pomt relative to the sphere S. Equation (16) there-
fore becomes

2B cose=mlv. (19)
If the initial velocity is v,, the initial angle s, will be given by
cos 6= 2. (20)
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Equation (19) will then be satisfied throughout the motion of the suspen-
sion point, as can be seen by inserting (15) into the second of equations (14).

Lastly, the z-axis must initially be normal to the sphere §.

When these conditions are satisfied, the moment N given by (17) will be
such that the component v, of the angular velocity of the frame, determined
by it, will satisfy the first of equations (11), as can be seen by inserting
(16) and (17) into the fourth of equations (14).

If conditions (18) and (20) are nearly satisfied initially and the z-axis
deviates by a small angle from the normal to the sphere S, the motion of
the frame can be analyzed by studying the small perturbations of the motion
which would strictly satisfy the initial conditions. This problem will be dis-
cussed under 6.

4. The gyro-frame motion relative to the Earth will now be examined
under the assumption that the Earth is a sphere of radius R and that all the
conditions under 3 are rigorously satisfied.

Introduce a moving reference frame vl (a geographical trihedron), with
the t-axis directed to the east and tangent to the parallel, 7-axis to the
north and tangent to the meridian, and {-axis directed upward along the
Earth's radius; let the origin be located at the frame suspension point.

Let U be the angular velocity of the Earth, ¢, the local latitude (strictly
speaking the geocentric latitude), and V, and V,, the eastern and northern
components of the velocity relative to the Earth of the origin of the system
¢nC. The projections on the §- and 7n-axes of the velocity of the origin re-
lative to the sphere S are

v‘=V,+ URcos ¢, vn=V,. (21)

Replacing the subscripts z and y in (11) by § and 5 respectively, and
using (21), we have

— v’ — v‘ U
u=—-p, =g tUcose (22)
where u, and u, are the projections of the angular velocity of the trihedron
7k relative to the Newtonian reference frame §*n*(*. The projection of this
angular velocity on the {-axis is

Vg .
u=—ptgp+ Using. (23)

Let 8 be the angle between the y- and y-axes, measured as shown in
Figure 5. It is easily seen that the projections on the z-, y-, and z-axes
of the angular velocity of the reference frame zyz fixed to the gyro frame are

0 =u, cos&—u,lsin 3, w,::u‘sinﬁ—}—u‘cos&.

4 (24)
4 dt -’

In accordance with (15) the z component of this angular velocity is equal
to zero. Inserting (22) into the first of equations (24) yields

Vr

T RUcosyt Ve® (25)

The y-axis, which is linked to the gyro frame, thus deviates from the
northern direction by an angle § determined by (25). This is the so-called
velocity deviation of the gyrocompass.

(B‘=u

tgd=

* Bulgakov, B. V. Prikladnaya teoriya giroskopov(Applied Theory of Gyroscopes). — Moskva, Gostekhizdat. 1955. |
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"Consider now relationship (19) between the angular momentum of the
gyro frame and the velocity of its suspension point on the sphere S. Insert-
ing (21) into it yields*,

H=2Bcose=mlV(RUcosp+V 4V} (26)

The above discussion shows that if (26) is satisfied the gyrocompass
deviation will be strictly according to (25), provided only the relationship
between N and e, given by (17), and the initial conditions under 3 are ob-
served. Note that the z-axis, linked to the gyro frame, is in this case
directed toward the center of the Earth, and therefore forms with the verti-
cal a small angle depending on the local latitude.

5. Form a Darboux trihedron z%9%° with apex at the gyro-frame suspen-
sion point, and with the z?-axis (edge) lying in the direction of the velocity
relative to the sphere § of the frame suspension point, and the #*-axis nor-
mal to the sphere; the direction of the y%-axis is then uniquely determined.
If the initial conditions of motion stated under 3 are observed, the z-, y-,
and z-axes linked to the gyro frame will always coincide with the z%-, y°-,
and z%-axes for any displacement of the trihedron on the sphere §.

Consider now the initial conditions in the general case and form the
equations of the gyro-frame motion relative to the trihedron z%°2,

The position of the coordinate system zyz relative to the trihedron z%09z°
is defined by the three anglesa, B, 7 (see Figures 6 and 7). The angle a
defines the rotation about the z-axis, which coincides with the z%-axis, of
the auxiliary coordinate system 2yz’ relative to the system 2%°%°; the angle
B defines the rotation about the 2"-axis, which coincides with the 2-axis,
of the auxiliary system z'y"Z” relative to the system z'y'7’; lastly, the angley
defines the rotation about the y-axis, which coincides with the y'-axis, of theco-
ordinate system zyz relative to the system 2"y"¥. Thedirectioncosines of the
system zys relative to the system z%%° are

20 yo 20

r cosacosy—sinasinBsiny sinacosy-4cosasinPsiny —cosPsinq

y —sinacosp cos a cos B sin B (27)

1 cosasiny4sinasinBcosy sinasiny—cosasinfcosy cosBcosy

In order to obtain the projections of the angular velocity of the coordinate
system zyz on its own axes, it is necessary to take the sum of the projec-
tions on these axes of the angular velocity of trihedron z%°z® and of the re-
lative angular velocities da/dt of the system Z'y's relative to the system
2099, dB/dt of the system z"y"Z relative to the system Zy’s’, and dy/dt of the
system zyz relative to the system Z'y"7"

The vector of the angular velocity da/dt is directed along the 2°-axis, that
of dy/dt along the y’-axis, and that of dB/dt along the #'-axis. The &'-axis,
which coincides with the 2’-axis, is the intersection of the planes z%®° and zz;
it forms angles 17, g, and }fgr—7y respectively with the axes of the coordi-
nate system zyz.

* Such a relationship was obtained earlier by Zheleznov in his improvement on the well-known Schuler
condition H ==mlRUcos ¢ in the approximate theory of gyrocompasses. When the Schuler condition
is satisfied, the deviation of the gyrocompass is to a certain extent independent on of the ship's velocity
and acceleration and is mainly determined by (25). Other scientists (Sleeve, Roitenberg) improved
Schuler's condition (for the case of high latitudes) by taking into account only the eastern component Vg
of the ship's velocity; this led to the expression H ==ml (RU cos ¢+ V).
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The following expressions for these projections are thus obtained from (27):

.

o =wl,(cosa cos Y — sin a sin Bsin7) 4
+ @l (sin a cos y -} cos a sin Bsin7) -
+(m"’,+g;)(—cosﬂ siny)—[-;gcos'r;
my=w°‘.(—sinacosﬁ)+w:,cosacosp—f-(w‘j,—{—:—:) sinﬁ+%: (28)

o, == w?, (cos a sin 7} sin a sin B cos 1)

), (sin @ sin y — cos a sin  cos y) -

(w‘},—{-%’) cos B cos T—{—:—f siny.

z
2
7 9y
ary
dt
.z_l'
f# o 4
b
FIGURE 6 FIGURE 7

Here o, wf,, w9 are the projections of the angular velocity of the tri-
hedron z%°%0 on its own edges. It follows from (11) that

m&,:—-T, ? =7z (29)

where 18, and v are the projections of the velocity of the trihedron apex
o ”* ) Y
on the 22- and y?-axes. However

D:,=0. (30)

since by assumption the velocity of the trihedron apex is along the #*-axis.
Inserting (29) and (30) into (28) yields:

w,=%(sin¢cos 1+ cosasinPsiny) 4

+ (w +';—:) (—cos Bsiny) +§g cosT;
w,:%cosacosﬂ—}-(w+%)sinp+%-}; (31)
w,=%(sinasin1—cosasinﬁOOST)""

a d
-+ (w +-:—‘) cosBcos'f-{-TgsinT.
Here
v=1°

80

are respectively the velocity of the trihedron apex relative to the sphere §

mzwg. (32)
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and the projection of the angular velocity of the trihedron apex on the nor-
mal to the sphere. The expressions for o,,w,®, have to be inserted into
the left-hand sides of (8).

We now find the right-hand sides of (8). The force of gravity F is, in
accordance with the assumption under 3, directed toward the center of the
sphere § and acts on the center of gravity of the frame. It is almost paral-
lel to the z%-axis. In accordance with (27), the projections of F on the z-,
y-, and z-axes linked to the gyro frame are

F,=FcosBsiny, F,=-—Fsinp, F,=——FcosBcosy. (33)

f Ad

In order to find the corresponding projections of the inertia force Q due
to translational motion, we use (12), which, with the aid of (29), (30), and
(32), can be rewritten

dv L
Q'=—m-‘-‘-, Qv.=—mw, Q‘.=mT. (34)

The same result could have been obtained directly by taking into account

that

v » »
W=z, w,=—'-'—, W,=—F (35)

represent the projections of the acceleration of a point moving on the sphere
on the edges of the Darboux trihedron moving along the trajectory of this
point. The radius of geodesic curvature p, of the trajectory*, the angular
velocity » of the Darboux trihedron about the normal to sphere § (about the
z%-axis), and the velocity of its apex v are connected by the relationship

v=wp, (36)

The following expressions for the projections of the inertia force @ on
the z-, y-, and %-axes linked to the gyro frame are obtained from (34)
and (27):

=—m® cos a cos Y — sin a sin B sin 1) —
s dt

— muwv (sin & cos Y-} cos a sin B sin 7) -} m-;- (—cosBsiny);

Q,= ——m"’i—"’(-—sinacosﬁ)—mmvcosucosp—{-m%sinﬁ; (37)

Q,= —m;-;(cosasinr—{-sinasinﬁcosr)—
—mmv(sinasinr—cosasinpcos'g)—{—m%cospooq.

The center of gravity of the gyro frame has the following coordinates in
the system zyz: z,=y,=0, 3,=—l.

The moments M,, M,, M, of the forces acting on the gyro frame are
therefore

M, =1FAQ M, M=—IlF1Q)t+M, M, =M, (38)

where M2, M;. M? are the moments about the z-, y-, and 3-axes due to
all forces except gravity and inertia forces acting on the gyro frame,

The reaction at the frame suspension point, or forces due to fluid pres-
sure on the gyrosphere in an Anschiitz gyrocompass give rise to moments
about the z-, y-, and z-axes which are separately equal to zero. Substituting

* Rashevskii, P. K. Kurs differentsial'noi geometrii (A Course in Differential Geomeury). — Gostekhizdat, 1956,
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in (38) for F,, F,, Q.. and Q, their expressions from (33) and (37) yields -
dy . v? . .
M‘=l£——mﬂ(—smacosB)—mwucosacosﬁ—}-(m—E——F sinB |4+ M,

M, =—I [-—-m ;;(cos a cos y— sin a sin B sin 7)—

— mov (sin a cos 7+ cos a sin B sin 1) 4 (39)

+ (m %’ —F) (—cos B sin 1)]—}- M,
M,=M:,

These expressions have to be inserted into (8) together with (31). The
following equations of motion of the gyro frame relative to the Darboux
trihedron are obtained as a result:

——[%(sinasin T—cosasinBcOS'{)-}-(w +%§)cosﬁoos1+
-+ g—?sin 1]28cose:ml:—: sin a cos B — mlwv cos @ cos f 4
+(ml%—lF)sin B4 M2;
‘%ZBcose:ml g(cosacosr—sinasinﬁsin1)+
~+ mlww (sin & cos 1 -} cos a sin B sin 1) 4~ (40)
+(ml %— ll") cos Bsin Y+ M3;
[—;— (sin @ cos { 4 cos a sin f sin 1) —

—(m —{—%)cosﬁsinr—{-j—fcos 1]28cosc=M:;

v d . ay R
——[Fcosacosﬂ—{—(w +E:_l) smﬁ—}—-a]283me=N(¢).
Equations (40) hold for any gyro frame. By inserting into them
M::M;.—::M::O, (41)

and expression (17) for the moment /¥ (¢), the equations of motion of a gyro-
compass having the properties described under (3) are obtained. As was to
be expected in this case equations (40) become identities if

a=B=1==0, (42)

and if ¢ satisfies (19). The functions v=v(t) and o=w(t), which define the
motion of the gyro-frame suspension point on the sphere S, are in this case
arbitrary.

When (42) and (19) are satisfied, the gyro frame will move in the manner
described under 3 and 4: its angular momentum vector, directed along the

y-axis, will throughout remain perpendicular to the vector of the velocity
relative to sphere S of the suspension point; the z-axis, which is parallel
to the pivot axes of the gyro frame housings, will always pass through the
center of sphere S, and therefore also through the center of the Earth.
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6. The equations of motion (40) of the gyro frame about the 2°-, y°-,
2%-axes of the Darboux trihedron moving along the trajectory of the suspen-
sion point are too complex in a general study of the motion of the gyro
frame. Only small motions of the gyro frame in relation to this trihedron
will therefore be considered; accordingly, only first-order terms in g, B,y
and their time derivatives will be retained in (40).

Using (41) and (17), we therefore obtain

(i'_.-p-}- )ZBcosz__l[m —-(F—m%)P—m'W].
ﬁ (2B cose) =1 [mvmu—(i'—m%)‘r'f‘ "':—:].
(_:% +%a—mT)ZBcosc=0.

(43)

%} +%+wﬁ)2B sins_—% cos s sine.

These equations determine the perturbations of the motion of the com-
pass gyro frame relative to the basic motion for which a, B, 7, and ¢ are
given by (42) and (19). If for the basic motion ¢ is denoted by ¢ (¢), then

e=o(t)4-3, (44)

where 3 is the same order of magnitude as «, B, and 7.
Inserting (44) into (43), neglecting all terms of higher order than the first

in a, B, 1, 8 and using
2B cos s (t) = mlu(t), (45)

which follows from (19), lead to the following equations describing the per-
turbations of the motion of the gyro frame:

—mlo3% —mi5 et IFp=—a 2B sine,

d . r
—ﬁ(ZBbsmc)-I-Z(F—"—;l—)T::mmlua,

| 4
2B tsin
+ ?MR s =—-Op.

Let the velocity of the apex of the Darboux trihedron and its angular
velocity @ about the normal to the sphere § be constant. System (46) then
becomes a homogeneous system with constant coefficients. Inserting into

it the approximation:
—x = F=mg, (47)

where g is the gravitational acceleration, gives the following roots of the
expanded determinant of system (46):

ti(vfow), i(v—o) (48)
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Here v='/ —%— is the frequency corresponding to the Schuler period

r=2«y/ X. (49)
V 3

According to the approximate theory of the space gyrocompass developed
by Geckeler*, the perturbations of the motion of a gyro frame consist of two
independent oscillations, each having a period equal to the Schuler period.
In one mode only a and B vary, in the other only ¢ and 3. It is seen from the
above discussion that Geckeler's theory is rather inaccurate, although in
general it leads to correct expressions similar to (17) and (19) for the char-
acteristic parameters of the sensitive element of a gyrocompass whose zy
plane remains throughout tangential to the sphere S (Geckeler considered
this plane to be almost horizontal).

7. If (47) is valid, equations (46) can also be integrated when v and o
are variables, i.e., for an arbitrary motion of the suspension point on the

sphere §.

In fact, inserting (47) and v= 'I‘T’ equations (46) become
4 va _vp_m28lsinc d [ 2Bbsine\ ¥ o
v P=wvm e @R )T R
B4, a= dy , ,2B%sine __, (50)
3—‘-+v‘/'_’_'¢_¢1, “-{-v i VeR B,
We now define the following two complex functions of the real argument ¢:
va 2B sino
x(t)= —+1ip, =1 — ———.
®) ‘,‘T‘I'F p)=1 i ViR (51)

Using them, system (50) can be replaced by the two equations
dz d
Stim=top,  Gh4im=ton. (52)

This system can be separated into two independent equations:

3 (et p) 10— o) () =0,

d (63)
5 x— )1+ o) (x—p)=0,
which are easily integrated. The result is
4
xp=(x+po) ezp [—t ](v—«»)dt].
y (54)

¢
2 — p = (rg — o) 2P [-—t I(v+¢)d‘]-
¢
where %, and py are the values of x(¢) and p () for ¢=0.
Using (54) and (51), the variables @, B, 7, 3 can now be given explicitly
as functions of their initial values &, By Yo 8 and of the time &.

* Grammel, R, Der Kreisel, Vol, IL —F. Vieweg, Braunschweig. 1920, [Translated into Russian. 1952.]
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‘When o = const, equations (50) become linear differential equations
with constant coefficients in which the variables are va/\/gR, B.1. and

2B ¥sino/ml VgR. sino is determined in accordance with (45) by

sino= /1 —(32). (55)

In accordance with (23), (24), and (32),

1 4
w=Usin?+Txtg?—g—:, (56)
where ¥ is given by (25).

In particular the angular velocity o is constant when the suspension point
moves uniformly along the Equator or any parallel,

8. The above theory of small motions of a gyro frame about the moving
axes of the Darboux trihedron moving along the trajectory of the suspension
point shows that undamped oscillations are likely to occur. The problem of
the stability of the motion defined by the nonlinear equations (40) requires
further investigation.

Introducing in the gyro frame's mechanical system a damping similar
to that used in Anschiitz double-gyrocompasses causes ballistic deviations,
i.e., additional variations of a, B, y, and &, determined by the laws govern-
ing the acceleration of the suspension point in its motion on the sphere S.

A special analysis is needed to calculate these deviations.

We shall determine further on the perturbations introduced in the motion
of the sensitive element of the double-gyrocompass by the deviation of the
Earth's shape from a perfect sphere.
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Appendix 3

DETERMINING THE POSITION OF A MOVING OBJECT
BY GYROS AND ACCELEROMETERS*

The problem of the so-called autonomous determination (i.e., a determi-
nation which uses no external reference points) of the position of a moving
object (inertial navigation) is of great practical importance.

Because of the insufficient accuracy of the sensitive elements available,
namely Newton-meters (accelerometers), gyros, and integrators, no practi-
cal solution to this problem existed until recently. However, instruments
developed recently** make it possible to solve this problem with a satis-
factory accuracy, provided the duration of the object's motion is compara-
tively short.

This appendix considers the theory of one method of autonomous determi-
nation of the position of a moving object, i.e., of inertial navigation.

The important problem of evaluating the inaccuracy in determining posi-
tion, caused by the so-called instrumental errors of the integrators,
Newton-meters, gyros, and other elements of the system, is outside the
scope of this study. It will therefore be assumed that the above-mentioned
elements are perfect, i.e.; operate without errors. The electromechanical
system on which solution of the problem is based, will therefore be treated
under the assumption that all its parameters correspond exactly to their
theoretical values, and that there are no mechanical faults (such as inac-
curate assembly and lost motion in the transmissions). The initial condi-
tions of the system's motion are arbitrary.

1. We begin by solving the problem of the autonomous position determi-
nation of an object moving along an arc of a great circle of a nonrotating
sphere § whose center coincides with that of the Earth (Figure 1). In the
simplest case this corresponds to a motion at constant height above the
Equator. The determination of the object's position relative to the Earth
itself thus becomes simply a determination of the duration of motion,

Let two coordinate systems zy and £*n* with a common origin be fixed
at some point of the moving object (Figure 1). We shall call this point the

* PMM, Vol.21, No. 6. 1957

** We suggest the name “Newton-meters” for the instruments usually known as accelerometers, since
they measure the combined action of gravity and the inertia forces due to translational motion
on their sensitive element, The force measured is in fact the projection of the resultant of these
forces on a direction fixed relative to the instrument, which we shall call the sensitivity axis of
the Newton~meter.

The inertia forces due to translational motion should obviously be detcrmined relative to a re-

ference frame fixed to the instrument itself. Coriolis forces usually do not affect instrument readings.

*** Draper, C.S., W. Wrigley, and L. R. Grohe. The Floating Integrating Gyro and its Application to
Geometric Stabilization Problems on Moving Bases.— Aeronautical Engineering Review, 15(6): 4€.
June, 1956.
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object center. The z-axis of the coordinate system 2y is directed along the
object's velocity vector ». The y-axis is the prolongation of the Earth's
radius to the moving object's center. The axes of the Newtonian coordinate
system §*«* have a fixed orientation relative to the sphere §.

Let the two coordinate systems coincide at t=0. Subsequently, the co-
ordinate system zy will rotate through an angle ¢, varying with time, rela-
tive to the system §*%* which has a translational motion. This angle is re-
lated to the distance s=s(¢) traveled by the object center from the initial
point:

$

Here R is the radius of the great-circle arc along which the object center
moves.

7ty

FIGURE 1

Let a platform (1), stabilized by gyros, be mounted on the object (Fig-
ure 2). In the simplest case this platform is oriented by follow-up systems
in such a way that it is always perpendicular to the angular momentum vec-
tor of a precision gyro. The pivot bearings of this gyro's outer ring are
mounted on the stabilized platform.

Let the angular momentum H of the gyro lie in the {*9* plane, and let a
moment M = M () be applied to the pivot axis of its outer gimbal ring
(Figure 2). In this case the precession of the gyro also takes place in the
£*n* plane. Following the gyro, the stabilized platform will rotate at an
angular velocity

ay__ M (1)

T*="H @)

where ¢ is the angle between the vector H and the %*-axis.

Let a Newton-meter (2) be mounted in the plane of the stabilized plat-
form (1) (Figure 2), and denote by a=a(t) its instantaneous reading. If the
sensitivity axis of the Newton-meter does not coincide with the r-axis, the
reading a(t) of the meter (Figure 3) will be:

LA P d2s
a(t)=(]—7)sma+i-‘—,-oos¢. 3)
Here | is the gravitational acceleration, and
a=¢—¢ 4)

the angle of deviation of the stabilized platform from the horizontal direction
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(more accurately, from the direction perpendicular to the Earth's radius).
If the function a(t) obtained as the Newton-meter output is fed to an integrat-
ing unit, a new function

]
KIa(t)dt-}-m, (5)
[

is obtained, where K and m are constants whose values will be determined
below.

FIGURE 2 FIGURE 3

The function (5) can be reproduced as a moment M (8) acting on the gyro.
Substituting this expression for M (t) in (2) and integrating yields

y=1 [ [e®ar+F 1+ (6)
[ ]

where ¢, is the angle of inclination of the stabilized platform to the hori-
zontal plane (more exactly, to the r-axis or the §*-axis coinciding with the
latter at that instant) for t=20.

Inserting (1) and (6) into (4) yields

[ ]
a=—;?-—%-j J‘a(t)dz’—i;—t—-q'.. (7)
00

from which a differential equation for the function a=a (f) and its initial
conditions can be established. In fact, substituting t=0in (7) gives,
since s (0)=0,

a(0)=—4»°, (8)

which could obviously also have been obtained directly from (4). Differ-
entiating both sides of (7) with respect-to time, we have

[
bk fowu—g. 0
]

It follows that the initial value of the time derivative of a(¢) is

0) __v(0
=R T 10)
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where v(0) is the initial value of the velocity -;:— of the object center relative

to the sphere §.
A second differentiation of both sides of (7) yields, after subsituting (3)

for a(t), . X @ . x .

When the function s==#(t) is given, this is a second-order differential
equation for determining the angle of inclination a==a(t) of the stabilized
platform relative to the horizontal plane. The initial conditions for this
differential equation are given by (8) and (10).

2, The differential equation (11) has the particular integral

a=0, (12)
if the equality .
K
= (13)
is satisfied, and if the initial conditions are such that
=0, £O0_g (14)

Equation (13) defines the parameter K. The first of conditions (14), to-
gether with (8), state that for ¢==0 the stabilized platform will be parallel
to the horizontal plane, i.e.,

q;°=0. (15)
The second of conditions (14), together with (10), yield
v (0) m
R —F* (16)

This defines the value which the parameter m must take in the device
for which (5) is true.

Thus when (15), (16), and (13) are satisfied, the stabilized platform will
remain horizontal (more exactly, perpendicular to the Earth radius) through-
out any arbitrary motion s==#(t) of the moving object.

Let a=0. Inserting this into (3) yields a(t) = —:—:—:. Substituting this ex-
pression together with (16) and (13) into (5) yields:

[
K[ %dt-}-u(O)]:Kv(t). 1
0

It follows that in this case the function (5) represents, except for the
constant factor K, the instantaneous value of the object's velocity »=v(t)
relative to the sphere S. If the value of (5) is fed to a second integrating
unit, the distance s(t) traveled by the object from its initial position will be
obtained as output (omitting the factor K).

3. In the general case a0, the magnitude

¢

]
j[xja(e)dt+m]dt, (18)
[ ]

computed by the integrating units, will differ from Ks(t). In accordance
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with (7) and (13) the difference between these two magnitudes is
et
Ax-_—_s(z)—-,’rj‘jxa(z)dwm\dt=Ra(t)+Rq».. (19)
olo

The error As in the determination of the distance s(t) by this method is
therefore

As=R[a(t)— ()} (20)

where a(f) is obtained from (11) and the initial conditions (8) and (10) when
condition (13) is satisfied.

The angle of inclination a(¢) of the stabilized platform to the z-axis can
be assumed to be small, so that all terms in (11) of higher order than the
first in @ can be neglected. Using (13), equation (11) then becomes the
homogeneous linear differential equation

d%a 1 Ldd
The following approximation holds for low velocities:
j—%’-.—zgzconst. (22)

where g is the gravitational acceleration in the region of motion of the ob-
ject. In this case the solution of (21) is a harmonic function
1 da(0)

2 sinvt (V’— L) , (23)

a(t)=a(0)cos vt + - —5 =g

whose period is

T =2r yR[g = 84.4 min

known in the theory of gyroscopes as the Schuler period.

It thus follows from (20) and (23) that in the general case the error in
the autonomous determination of the object's position has an oscillatory
pattern.

4. Other methods exist for determining the position of an object moving
along the arc of a great circle. These usually lead to similar results.

Let the platform be stabilized so that it remains parallel to the §*-axis
during the object's motion. This can be obtained by means of free gyros
or by following the stars (astronavigation)*. In this case

te
1 0
1=7!£a(t)dt’+3;—)t. (24)

When certain equations similar to those above are satisfied, the follow-
ing relationship is obtained:
s=Ry. (25)

Ingenious devices exist which carry out the necessary double integration
in one step instead of two (the Bojkov integrator%*),

* Wrigley, W., R.B. Woodbury, and J. Hovorka. Inertial Guidance.— Preprint No.698. Institute of
Aeronautical Sciences, New York. 1957.
** Bojkov, J.M. Einrichtung zum Messen von Wegstrecken.— Deutsch. Patent No. 661822, K1.42,
Siemens Apparate und Maschinen, G.m.b.H. Berlin. 2 June, 1938.
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5. We shall now discuss the problem of determining the position of an
object whose center moves arbitrarily on the Earth's sphere. We assume
that a platform is stabilized by gyros in such a way that angular velocities

N N
w,=-7'3-, w,._—.-—i’-l—, (»,=—§:!- (26)

about the z- and y-axes lying in the plane of the platform and about the
2 -axis normal to this plane are caused by three torques M,, M,, M,.

FIGURE 4

Figure 4 gives one possible way of obtaining such a stabilization. Plat-
form P, mounted on the object in gimbals (not shown on the drawing) is
continuously maintained perpendicular to the axis of rotation of gyro I by
means of follow-up systems. The outer gimbal ring of gyro I is carried in
bearings mounted on the stabilized platform in such a way that its pivot axis
lies in the plane of the platform. Whenthe follow-up systems work perfectly,
the inner-ring pivot axis or, which is the same, the pivot axis of the gyro
housing, lies in the same plane.

Let M, and M, be the torques applied respectively to the pivot axes of the
outer gimbal ring and of the housing. Denote these axes by z and y re-
spectively. The torques M, and M, cause precession of the gyro and, con-
sequently, rotation of the platform about the z- and y-axes at angular veloc-
ities w, and w, given by the first two of equations (26).

The outer gimbal ring of gyro II (Figure 4) which has the same angular
momentum H as gyro I, is carried in bearings mounted on platform P in
such a way that its pivot axis is perpendicular to the plane of the platform.
A corrective torque is applied to this axis so as to cause the axis of rota-
tion of gyro II to take up a position parallel to the plane of the platform.
The z-axis, fixed rigidly to the stabilized platform, is made to coincide
continuously with the axis of rotation of gyro II, by means of a follow -up
system.

The torque M;, applied to the pivot axis of the second gyro housing,
causes a precession of the gyro and, as a result, a rotation of the plat-
form at an angular velocity w, about the z-axis. This axis is perpendicular
to the plane of the platform and forms together with the z- and y-axes a
Cartesian coordinate system zy2, fixed to the platform. It will be assumed
that the origin of this system coincides with the object center. The magni-
tudes M; and w, are related by the third of equations (26).

Two Newton-meters (not shown in Figure 4), whose sensitivity axes
are directed along the z- and y-axes, are mounted on the stabilized plat-
form in the vicinity of the origin of the coordinate system zyz.
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Let the object center move arbitrarily on the Earth, and let the torques
M, and M, be related to the readings @, and a, of the corresponding Newton-
meters by the formulas:

¢ [
M,=K [adt+m, M,=—Kja,dt—m,. 27
0

Integrating units must be provided to create the torques M, and M,.
The values of the torque My and of the parameters K, m;, and m, in (27),
required to maintain the platform in a horizontal plane will now be found.
The projections on the z-, y-, and z-axes of the acceleration of the sys-
tem zyz relative to the sphere S are*

dvo,

Ws =3¢ +op, —op,

dv
wv=—d?’- (I)’U‘—U‘D" (28)

dv
w,= dt’ + v, — 0w,

where v,, v,, and v, are respectively the projections on these axes of the
velocity of the coordinate origin relative to the sphere S.

The projections of the force of gravity on the z- and y-axes vanish in
this case. It follows that the Newton-meters measure the accelerations
w, and w, directly. The following equations are therefore obtained in ac-
cordance with (26) and (27), taking into account that v,=0:

m‘=———§-j(%’-+m,v,)dt——% .
o‘ (29)
0, = —2—!(3:‘ —-w,u,)dt-{-—%!.

Since the plane of platform P must remain horizontal throughout the ob-
ject's motion, and since the z-axis is directed along the Earth's radius,

the following equations** must be substituted into (29):
v,=u/R, v,= — o R. (30)

Expressing v, and o, in (29) by means of (30) yields

¢
o= [ (G — )+ g ma
[}

¢
vy=-5}l(-%?- m,v,)dt—{-%m,. (31)
0

These equations must be satisfied for any arbitrary variation of », and v,

i.e., they must be identities. This is, however, only possible if the

* Suslov, G. K. Teoreticheskaya mekhanika (Theoretical Mechanics). — Gostekhizdat. 1944. [cf.
Goldstein, Classical Mechanics. p.135.— Addison-Wesley. 1951.]
** Ishlinskii, A.Yu. Ob otnositel'nom ravnovesii fizicheskogo mayatnika s podvizhnoi tochkoi opory
(The Relative Equilibrium of a PhysicalPendulum with a MovingPoint of Support). — PMM, Vol, 20,
No.3. 1956.
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following conditions are satisfied:
Lh=1:  w,=0 m=Ko,O0; m=Kv,(0) (32)
The first of these conditions is identical with {13), the second leads, in
accordance with the third of equations (26), to

M,=0. (33)

Finally, the last two conditions connect the projections on the z- and
y-axes of the initial velocity relative to the sphere § of the moving object
center with the parameters m, and m, of the integrating units.

6. The substitution of (27) and (33) in (26) shows that the projections
o, and o, of the angular velocity of the stabilized-platform are transformed
by the integrators into known time functions. In addition, ®,==0, and the
z-axis is directed along the Earth's radius. This makes possible in princi-
ple the continuous determination of the object's position on the Earth and
of its course,

s
FIGURE 5

Consider the so-called geographic trihedron §€ (Figure 5), whose
apex coincides with the origin of the coordinate system zyz (i.e., with the
object center). The t-axis is directed to the east, the M-axis to the north,
and the (-axis upward along the Earth's radius. The projections of the
absolute angular velocity @ of this trihedron (i.e., of the angular velocity
relative to the sphere §), arex

14 v 14
u£=——;—. u,=-7:-'+Ucoscp, u‘=-ﬁ‘:tgp+llsin9. (34)

Here U is the angular velocity of the Earth, ¢ is the latitude, V, and vV,
are respectively the eastern and northern components of the velocity of
the object center relative to the Earth. Obviously

di

d
a Va=RZ (35)

Ve,=Rcos¢ ar

where X is the longitude,

¢ Bulgakov, B.V, Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes).— Moskva, Gostekhizdat.
1955. {English translation, IPST. 1960.]
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The {-axis coincides in this case with the z-axis. The projections

v, w,, o, are therefore related to g u,, and u, as follows:

W= B COSY +u,siny,

w,= —u, sin x+,cosx, (36)

d
o, = u!+—d—}-,

where y is the angle between the - and z-axes (Figure 6).

We note that w,=0, and that v,=w,(t) and o, =0, () are known functions
of time. Then inserting (34) and (35) into (36) leads to the following system
of three differential equations with three unknown functions #(t), A(t), and
x(®):

._.-g% cosy +(U -+ %:l) cos ¢ sin X =, (t);

. di
‘:—tsmx—}-(U—}—7‘—)cosq«cosx=m,(t); (37)

(U +-%~)sintp +%=0

When the initial conditions ¢ (0), A(0), and x(0) are known, i.e., when
data on the object's position and orientation at t—=0 are available, equations
(37) can be solved by a computer. For this it is convenient to write them in
an explicit form with respect to the derivatives:

d .

d_"’= — w, (t) cos x + v, (t) sin 1,

ax w, (1) sin Y 4 w, (¢) cos

= U (38)

L= — o, (t)sinx+ o, () cos X tg &-

Having determined the functions ¢ (t) and y(t), it is possible to find the
object's course, i.e., the angle x between the vector of its velocity relative

(North) (North)

yf 7 7
o

x/!

Uy z |

E(East) :

8 G as W E(East)
FIGURE 6 FIGURE 7

to the Earth and the local meridian (Figure 7). In accordance with (35)
and (38), x is determined by the equation:

Vi Ucosp— w, (t)siny —w,(t)cosy

tg!:Vx-— u,(t)cosl—uy(l)sinx (39)
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. We shall now study the perturbations of the motion of platform P, assum-
ing that its plane is not strictly horizontal at t=0, and that conditions (32),
determining the parameters m, and my, are satisfied within a small error.

It will however be assumed that the first two of conditions (32) are rigorously
fulfilled.

Introduce a Darboux trihedron 2%°%® with 2% and y®-axes tangential to the
Earth's sphere*, and therefore also to the nonrotating sphere S. The z®-axis
is directed along the vector » of the velocity of the trihedron apex relative to
sphere §. The trihedron z%°%° will be called the natural Darboux trihedron.
Let its apex be at the center of the moving object, i.e., at the origin of the
coordinate system zyz fixed to the stabilized platform. The projections of
the angular velocity w® of the natural Darboux trihedron on the 2°-, y°-, and
s-axes are

vl =0, m°y.= -;—?-, wlf=d. (40)
For a given velocity o=v(t), the function & =&(f) defines** the geo-
desic curvature of the trajectory of the Darboux trihedron apex on the

sphere §. -

FIGURE 8

The projections on the z°-, y°-, and z’-axes of the apex acceleration re-
lative to the sphere § are

dv - v
We=gr, We=@, W= — 5 (41)

The direction cosines of the system zyz relative to trihedron z%°s° are:
z° y° 5°
z cosycosP—sinysinasinB sinycosP4cosysinasinp —cosasinf

v —sinycosa cosycosa sina (42)

z cosysinp-}-sinysinacosp sinysinp —cosysinacosp cosacosp

The angles &, p and 7 determine the orientation of the coordinate system
zyz relative to the trihedron 2% (Figure 8). The angle 71 is the angle
through which the auxiliary coordinate system z'y’z, whose 2z'-axis coin-
cides with the z%-axis, is rotated relative to the Darboux trihedron; the

* Cf. Appendix 2, p. 281,
* Cf. Appendix 2, p. 284.
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rotation is counterclockwise if viewed from the positive Z-axis, and is .
intended to make the Z-axis lie in the zz plane. The angle a is similarly
determined by the relative position of the coordinate system Zy7 and the
auxiliary coordinate system z'y'?’, whose - and z’-axes coincide. The
2’ -axis of the latter coordinate system is likewise made to lie in the 2z
plane, as a result of which the y’-axis coincides with the y-axis.

For a>0, the rotation of the system 2"y"z" relative to the system 2y7
is counterclockwise if viewed from the #-axis (or, which is the same,
from the positive #’-axis).

Lastly, the angle B is the angle between the z- and z"-(z'-) axes of the
coordinate systems zyz and 2'y'z". The sign of B is determined in a similar
way to that of 7 and a.

The angular velocity w of the coordinate system zyz relative to the sphere
S represents the geometric sum of the angular velocity w® of the natural
Darboux trihedron relative to this sphere and of the three relative angular
velocities dy/dt, da/dt, and dB/dt. The latter are respectively the angular
velocities of the coordinate system z'y’Z relative to the trihedrom %%, of
the system 2"’z relative to the system z'y'7 and, finally, of the system zyz
(the stabilized platform) relative to the system z"y"s".

The vector of the relative angular velocity dy/dt is directed along the
®-axis, that of the angular velocity dB/d¢ along the y-axis, and that of the
angular velocity da/dt along the Z-axis. The Z'- and z°-axes coincide when
1=0; this makes it possible to find from (42) the direction cosines of the
angular velocity da/dt relative to the coordinate system zyz (Figure 8).
Thus, the projections o,, w,, and o, of the angular velocity of the stabilized
platform on the axes of the coordinate system zyz are

w, =4 (sin 7 cos B +- cos ysinasin B) 4
+ (8 4 31)(—cos asinp) + 55 cos ;
w, =2 cosycosa+ (64 51) sina+ % ; (43)
w, = (sin 1 sin B — cos 1 sin a cos B) +-
+ (& +57) cos a cosp+- 55 sinB.

By (42) and (41), the projections w,, Wy, and w, of the acceleration of the
origin of the system zyz are:

r
R

A
R

w,=%%(cos-(cosﬁ-——sinysinasinﬁ)+ﬁv(sin1 cosB
-} cos ¢ sin a sin B) — %(—cosasin B).

w,=-;‘1 (-—sinxcosa)-[—imcos1cosa——%sin¢, (44)

w,=%;-(cos1sinp+sinysinacosﬂ)—{-a’w(sin1sinP-—

—cos1sinacosp)—%oosacosp.'
In contrast to 6, the projections of the force of gravity on the z- and
y-axes differ from zero. As a result, a Newton-meter whose sensitivity
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axis is directed along the z-axis will now measure the difference between
the acceleration w, and the projection on the z-axis of the gravitational ac-
celeration j, which is directed along the z°-axis toward the Earth's center.

It follows from (44) and (42) that the readings e, and a, of the Newton-
meters must be expressed by the formulas

a,=%(cos1cosp—sin7sinasinﬂ)-{-&v(sinroosﬂ-l»

o P\ osasinB),
+cosysmasm$)+(] R)( cos a sin B) (45)

a,=:—:'-(—sin1cos a) 4 @v cos1cosa+(j—%)sin¢.

The torques M, and M, are given by (27), it being assumed that My is
zero. Substituting these values in (26) yields

g = — -——I aydt——
0, = %I adt 47, (46)

o, =0.

The left-hand sides of these equations are given by (43), and the in-
tegrands by (45). Inserting these into (46) for given functions v(t) and & (t)
yields a system of equations for determining the time functions a(t), B(t),

and 7(t).
Time differentiation of the first two of equations (46) yields
dw d"y X _
'+ ] ay_O T—Ta —0, (D,-O. (47)

Assuming that a and B in (43) and (45) are small, terms of second and
higner order in these variables can be neglected. Thus (43) and (45) be-

come

w=%smr—(&+ ATER N
=-!—cosr+(ﬁ )a-]-d‘ .
R(Bsmy—acosx)-{—m-{- 3

(48)
d P . 2
a,= ;;cosy+wvsmr—-—(l—%)ﬁ,
a,= —gsinf—}-&vcosr-}-(i—-%) a.
Since ©,=0, it follows from the third of equations (48) that
6:-{--'1—7‘-:%(« cos { — Psin 7). (49)
Thus the terms
= 4 dy dy

(343 (a+3)8. (50)
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in the first two of equations (48) are of the second order in a and B and can
therefore be neglected. Therefore, up to first-order infinitesimals:

L
m,=-%sinr+—da—:, m,=-’%008‘[+—‘—ﬁ‘-. (51)
Inserting the value of & given by (49) into the last two of equations (48)

yields:

. . v
0= 2 @oosy)+-5 (acosy—Bsiny)sing —(j—F)B:
p ' - ) Lo (52)
a’=_7‘_(vsm~,)+-l—i-(acosT—ﬁSlnT)COST+(I"ig’)“'

Inserting (51), (52), and (13), into the first two of equations (47) yields

g_:_;_i__;;_a:%(asin'{-{-PcOST)Sin'ﬁ
o - . (53)
28 | Jp= 2 (asiny+Boosr)cosT.

Together with (49) these two equations form a system of differential equa-
tions for determining the functions a(t), B(t), and y(¢)*.
We define two new variables § and g as follows:

—=acosy—Bsiny,

n=asiny4Bcost. (54)
Substituting these variables for a and B in (49) and (53) yields:
a2 dy dy d%y N | T e__0.
g atiad—t(E) + =0
d2y dy d§ d2y d1\2 I v? _
2 L8 e —n(T) +H(E— ) =0 (55)

2
Substitute in the first two of these equations the values of % and % ob-

tained from the third. Neglecting second-order terms in §, 7, and also
their time derivatives, leadsto a system of two linear differential equations
with variable coefficients, which define the small oscillations of the stabil-
ized platform.

8. Putting aside the problem of integrating (55) for an arbitrary motion
of the object on the Earth, we shall restrict ourselves to the case @& =const
and v=const, which corresponds to a motion at constant velocity along a
great-circle arc on the sphere S. The motion relative to the Earth will in
the general case be along an irregular trajectory at a variable relative
velocity. Motion of an object at constant velocity relative to the Earth along
a parallel or along the Equator is an exception.

* For small oscillations of the stabilized platform equations (53) are identical with the equations of small
oscillations of a physical pendulum whose point of support moves on the sphere §. The equilibrium
conditions of this pendulum relative to the natural Darboux trihedron are given in the author's paper:
Ob otnositel'nom ravnovesii fizicheskogo mayatnika s podvizhnoi tochkoi opory (The Relative Stability
of a Physical Pendulum with a Moving Point of Support). —PMM, Vol 20, No. 3. 1956.
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If ® and v are constant, system (55) reduces in a first-order approxima-
tion, after the variable 7 has been eliminated, to the following form:

dt _d ] .
w2 g +(F—) =0,
dty - dt i - 2y
w23 +(F —a—m)r=0.

This is a system of linear differential equations with constant coefficients.
For &=0 and v==const (motion along a great-circle arc), system (56)
can be separated into two independent equations:

a2 J e
@+ 7 t=0

% i o
@+ (F—mh=0

(56)

(57)

The first of these corresponds to angular oscillations of the platform
about the y*-axis of the natural Darboux trihedron, the second to oscilla-
tions about the z®-axis (which lies in the direction of the velocity vector »).

These oscillations have similar frequencies, if the velocity v is not too
large (i.e., considerably lower than the velocity of points on the Equator
due to the diurnal rotation of the Earth). The period is approximately
equal to the Schuler period (84.4 min).

9. When the stabilized platform undergoes small oscillations, i.e.,
when a and B differ from zero, equations (30) will not be strictly satisfied.
In addition, equations (31) on which this method is based, will not be exact
identities, since the readings @, and a, of the Newton-meters include the
corresponding projections of the gravitational acceleration j.

When conditions (32) are satisfied, it can be expected that the errors
caused by these factors when determining the latitude and longitude of the
moving object and its course will have an oscillatory pattern. Further
studies are, however, necessary in order to determine the time variation
of these errors accurately.

10. It was assumed above that the object's center moves on the sphere §
so that ,=0 in (28). We shall now show how to eliminate this restriction
and solve the problem of inertial navigation in the case of an arbitrary ob-
ject motion about the Earth.

Let a platform stabilized by gyros move in such a way that its plane re-
mains perpendicular to the Earth's radius. This again necessitates the ful-
fillment of (30), in which v, and v, are, as above, the projections on the
z- and y-axes of the velocity » of the center of the platform gimbals relative
to the sphere §, and v, and v, are the projections of the angular velocity
on these axes. The following equations must therefore hold:

v
o, =—_L, o=

. (58)

HI.'

In contrast to (30), however, here R=R(t) is variable, being the distance
between the platform gimbal center and the center of sphere §.

The angular velocities o, and v, are caused by precessional torques M,
and M, defined by the first two of equations (26). Substituting (58) in them
leads to the following expressions for the torques:

My=—20, M=Fv. (59)
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Assume that in the vicinity of the gimbal center two Newton-meters
are mounted whose sensitivity axes are respectively directed along the z-
and y-axes lying in the plane of the platform. Their readings a,(t) and a,(f)
will not contain the projections of the gravitational acceleration j on the
z- and y-axes, since by assumption the stabilized platform remains through-
out its motion perpendicular to the line connecting the gimbal center to the
center of the Earth. The following expressions can therefore be written:

d do
a,(t)=w,= -dL:- + 0P, —w.0, a, (t)= w, = 7‘! + 0,0, — o0, (60)

In contrast to the previous case, v, is not zero:

dR
7,2-3‘— . (6 1)
Assuming as before that My=0, it again follows from the third of equa-
tions (26) that w,=0, i.e., that the platform will have no angular velocity o

component along the z-axis directed along a radius of the sphere §. Be-
cause of this and of (58) and (61), equations (60) can be written in the form
__dv v, dR _ 49, , v, 4R
e.)=2+F > swO=gm+x7ma- (62)
These relationships can be considered as differential equations. If their
solutions a.(¢), a,(t), and R(t) are known, the functions v,(t) and v, (t), which

are required for determining the torques M, and M, which control the ori-
entation of the platform, can be found.

Equations (62) can be solved by quadratures:

,‘=ﬁ []’n(z)a, (t)dt + R(O)v,(O)J-

, (63)
v,=ﬁL[R(t)ay(t)dt+R(O)vy(O)].

It follows from (59) and (63) that the torques M, and M, are functions of
the readings a,(t) and a,(t) of the Newton-meters:

$
M, = R_j{ﬁ [!R(t)a,(t) a¢+n(0)v,(0)];
‘ (64)
M:=—R—f(‘—)- [! R(t)ay(t)dt—}—R(O)Dy(o)]-

This means that units capable of multiplying and dividing the instantane-
ous values must be introduced in the inertial navigation system.

The variable R=R(t) in (64) is assumed to be known in advance. The
availability of a third Newton-meter, whose sensitivity axis is parallel to
the z-axis (the Earth's radius), permits the independent determination of
this function. The readings of this Newton-meter are

. d .
a‘=w'+]=dL“' -}-m,v,—w,v,—{-], (65)
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where
2
i=im (66)
is the gravitational acceleration, which decreases inversely with the dis-
tance from the Earth's center, and j, is the value of this acceleration on
the surface of the Earth whose radius is R,.

Inserting (58), (61), and (66) into (65) leads to the following differential

equation for the function R(¢):
3 B 4ot R?
Th—3 tiem=a) 67)

The unit which integrates this differential equationmustbe included in one
system with the integrators which reproduce the torques M, and M,, because of
the relationships between the latter and R(t). As (59) shows, these torques
differ only by a constant factor from v, (t) and v, (f); it is seen from (67) and
(63) that v, and v, appear in the equation for R(t), while R(t) appears in the
equations for v, and v,.

The next step in determining the position of a moving object is the in-
tegration of system (38), v, (t) and w,(t), because of (58), (59), and (63), be-
ing known functions of time.

The problem of the stability of this inertial navigation system (allowing
for small oscillations of the stabilized platform) requires further study.
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